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We present a well-defined formal framework, together with appropriate mathematical
tools, which allow us to implement in a constructive way, and to investigate in full
mathematical details, the Bonnor-Thorne approach to gravitational radiation
theory. We show how to construct, within this framework, the general radiative
(formal) solution of the Einstein vacuum equations, in harmonic coordinates, which
is both past-stationary and past-asymptotically Minkowskian. We investigate the
structure of the latter general radiative metric (including all tails and nonlinear
effects) both in the near zone and in the far zone. As a side result it is proven that
post-Newtonian expansions must be done by using the gauge functions (lg¢)?/c"
( p, n = positive integers).

1. INTRODUCTION
1.1 Motiwvations

Gravitational radiation theory, in the context of general relativity, has been the subject of
extensive research, especially during the last twenty-five years. However, it must be admitted
that some of the main problems of gravitational radiation theory have not yet received
satisfactory answers. In this article and its sequels, we shall consider three of these problems,
that we summarize in the following three questions.

Problem 1 (‘asymptotic problem’): what is the asymptotic behaviour, appropriate to
isolated systems and consistent with Einstein’s field equations, of radiative gravitational
fields far away from their sources?

Problem 2 (‘generation problem’): what is the link between the preceding asymptotic
behaviour and the structure and motion of the sources that generate the gravitational
radiation?

Problem 3 (‘radiation reaction problem’): what is the back-reaction of the emission of
gravitational radiation on the source?

These problems were first tackled by Einstein (1916, 1918) by means of a linearized
post-Minkowskian approach. Many authors subsequently questioned the validity of the
conclusions of these and related pioneering works on the grounds that the nonlinear structure
of the field equations might qualitatively change the results of the linearized approach. On the
basis of the work of Einstein et al. (1938) several authors even doubted the existence of
gravitational radiation (see, for example, Infeld & Plebanski 1960). However, the discovery
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of a number of exact wave-like solutions of the vacuum field equations, together with the study
of gravitational wave fronts and a thorough investigation of the algebraical and differential
properties of the Riemann tensor gave some plausibility to the existence of gravitational
radiation (for lucid surveys of these approaches to gravitational radiation and references to the
numerous original works see Pirani 19624, b). Further important steps were contained in the
work of Fock (1959) who emphasized that problem 1 above had to be split into two
sub-problems concerning, on the one hand the asymptotic behaviour of the field at very large
distances from the source and at very large times in the past, where one should impose a ‘no
incoming radiation’ condition; and on the other hand, the asymptotic behaviour at very large
distances and at very large times in the future where nonlinear effects introduce (in harmonic
coordinates) divergent logarithmic deviations from the expected linearized behaviour of the
‘outgoing radiation’. Fock also pointed out that a possible method for trying to answer problem 2
above involved the use of some kind of matching between a gravitational field computed in
a region exterior to the source and another gravitational field determined in a region including
the source. Another important step was taken by Bonnor (1959) who introduced a new method
of approximation based on the simultaneous use of an expansion in powers of the mass (m)
and radius (a) of the source, and who proved that at the nonlinear approximation of order
m%a* there was a secular decrease of a certain coefficient of the metric, which reduced to the
Schwarzschild mass in the stationary case. This decrease was in perfect agreement with the
‘quadrupole energy loss’ formula of the linearized theory. Shortly afterwards Bondi et al.
(1962) and Sachs (1962) introduced a new approach to gravitational radiation theory based
on the use of a special type of coordinate system that avoids the appearance of logarithms,
and on a different approximation procedure. Instead of assuming that the metric admits an
asymptotic expansion in the coupling constant G (‘nonlinearity expansion’) they assumed the
existence of an asymptotic expansion in inverse powers of the (luminosity or affine) distance
(r). (The first step of this approach had been taken earlier by Trautman 1958.) They proved
that this assumption was not inconsistent with Einstein’s vacuum field equations, in the sense
that they could construct formal series in powers of 7! that were formal solutions of the latter
equations. Some of the important results of this work were the proof that a certain coefficient
of the metric, which reduces to the Schwarzschild mass in the stationary case, is monotonically
decreasing and a new formulation of the asymptotic behaviour of the ‘outgoing’ radiative
gravitational fields (‘peeling behaviour’) (Sachs 1961; Newman & Penrose 1962). The
approach of Bondi & Sachs was clarified by the geometrical ‘conformal’ reformulation of
Penrose (1963, 1965). The latter conformal approach allowed the weakening of the assumptions
used by Bondi & Sachs, and led to many further developments (for reviews see, for example,
Geroch 1977; Schmidt 1979; Ashtekar 1984).

However, it should be stressed that, despite its elegance, the whole Bondi—-Sachs—Penrose
approach to asymptotic structure appears at present to be unsatisfactory for several reasons.
Indeed, although it provides an elaborate conceptual framework allowing one to prove
theorems and to perform calculations, it rests on a set of assumptions that have not been shown
to be satisfied by a sufficiently general solution of the inhomogeneous Einstein field equations.
In other words, one can say (Schmidt 1979) that the Bondi-Sachs—Penrose approach provides
only a definition of a class of space-times that one would like to associate to radiative isolated
systems (asymptotically simple space-times with sufficiently smooth past and future null
infinities and with zero radiation fields at past null infinity), and that neither the global
consistency nor the physical appropriateness of this definition have been proven. There are

30-2
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382 L. BLANCHET AND T. DAMOUR

some interesting examples of radiative space-times admitting at least a piece of future null
infinity (Schmidt 1981 ; Ashtekar & Dray 1981 ; Bicak ef al. 1983), and recent general theorems
of Friedrich (1983 a, b) showing the local consistency of the Bondi-Sachs—Penrose definition with
Einstein’s vacuum field equations, but these results fall short of proving the global consistency
of the definition with a generic solution of the inhomogeneous field equations. On the contrary,
perturbation calculations have given some hints of inconsistency between the Bondi-Sachs—
Penrose definition and some approximate solutions of the field equations (Bardeen & Press
1973 ; Schmidt & Stewart 1979; Walker & Will 1979; Porrill & Stewart 1981; Damour 1985).
A second class of reasons that make the Bondi—Sachs—Penrose approach unsatisfactory is that,
although it provides at least a tentative answer to problem 1 above, it seems to be ill-suited
for giving answers to problems 2 and 3. Indeed_it gives information on the gravitational field
only in the form of an asymptotic expansion when 7> 00, which seems a priori difficult to relate
to the source located within r < a.

Furthermore, the present development of gravitational wave detectors, and the observation
of astrophysical systems where gravitational radiation reaction effects may have been or seem
to be important (like runaway or binary pulsars) make it urgent to find at least approximate
(but reliable) answers to problems 2 and 3 above. Several different approaches aimed at
answering the latter problems have been proposed: some are analytical, some are half
analytical-half numerical (e.g. perturbations around curved backgrounds), and some are
numerical. We shall discuss here only the analytical approaches. Among these, there exist two
main classes: the post-Newtonian approaches(1/c expansions) and the post-Minkowskian
approaches (G expansions). The post-Newtonian approaches are fraught with serious internal
consistency problems because they often lead, in higher approximations, to divergent integrals;
this is well known for radiation reaction calculations, see, for example, Kerlick (1980), but is
also easily seen to be true in the post-Newtonian wave-generation formalism of Epstein &
Wagoner (1975) (see, however, the improved post-Newtonian approaches of Persides 19713
Winicour 1983 ; Futamase & Schutz 1983; Schifer 1985). The post-Minkowskian approaches
have not shown any signs of internal inconsistency but, because of computational difficulties,
they have given answers to problems 2 (Kovdcs & Thorne 1977) and 3 (Damour 19834, b)
only in the special case of a source made of widely separated objects (treated as some kind of
point masses). For more general sources the straightforward post-Minkowskian method seems
rather powerless. Fortunately there exists another approach that can extend the reach of the
post-Minkowskian expansion method to more general sources. This approach (Bonnor 1959;
Bonnor & Rotenberg 1966; Couch et al. 1968; Hunter & Rotenberg 1969; Thorne 1977, 1980,
1983) combines a post-Minkowskian (pM) expansion (nonlinearity expansion, or asymptotic
expansion in powers of Gm) with a multipolar (M) expansion (expansion in irreducible
representations of the rotation group in Thorne’s formalism, or, equivalently, expansion in
powers of the source radius a in Bonnor’s formalism). We shall below call it a MmPM expansion
(Multipolar—post-Minkowskian).

The Bonnor-Thorne approach has already been used to investigate several aspects of
gravitational radiation theory (Bonnor & Rotenberg 1966; Hunter & Rotenberg 1969 ; Bonnor
1974; Thorne 1980; Schumaker & Thorne 1983). However, it must be admitted that the whole
Bonnor-Thorne approach still lacks a precise technical framework implementing its ideas in
a formally clear way and showing how they lead to a well-defined approximation procedure
for solving the field equations to all orders of nonlinearity. The first aim of the present work
is to put forward such a clear formal framework, and to define, within it, a constructive algorithm
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giving the (formal) general radiative solution of the vacuum field equations (taking into
account all orders of nonlinearity). (An outline of this framework has been given in Blanchet
& Damour 1984a.)

From a practical point of view, one of the main advantages of the Bonnor-Thorne approach
over that of Bondi—Sachs is that its spatial and temporal domain of a prior: validity is expected
to be larger. Indeed, the Bondi—Sachs approach, being an asymptotic expansion in inverse
powers of r for fixed retarded time u ~ t—r/¢,T is a priori expected to yield a ‘good’ (i.e.
uniform) approximation of an actual radiative metric only in the far wave zone r > A (A being
a typical wavelength). On the other hand the Bonnor-Thorne approach, being mainly a
nonlinearity expansion, is a priori expected to yield a good approximation everywhere in the
weak-field zone r > Gm/c? (this assumes that the simultaneous multipolar expansion is in fact
convergent, instead of asymptotic, and thereby does not restrict the domain of validity of the
method beyond the fact that one must stay outside the source: r > a 2 Gm/c?). Now, for many
sources we shall have A 2 Gm/c?, indeed this is true for slow-motion sources where
A > a 2 Gm/c?, and several numerical calculations have shown that this stays true even for
some strongly relativistic sources (gravitational collapse). Therefore the Bonnor-Thorne
approach, covering a priori a larger domain, both in space and in time, allows the investigation
of more aspects of gravitational radiation theory than the Bondi—Sachs approach; for instance,
gravitational wave tails (Hunter & Rotenberg 1969; Couch ¢t al. 1968; Bonnor 1974) or the
link between the far wave zone and the transition zone (r ~ A) or even (for slow-motion
sources) the near zone (r € A) (with the possible consequence of devising a wave-generation
formalism, see Thorne 1980). In the present article we shall limit ourselves to investigating the
structure of a general radiative metric in the far zone and (for slow sources) in the near zone.
In subsequent articles we shall use our general formal framework to investigate the connection
between the Bonnor—Thorne and the Bondi-Sachs—Penrose approaches, and to study the links
between the far-zone field, the transition-zone field, the near-zone field and the source (thereby
extending and putting on a firmer formal basis several results of Thorne 1980). This will
provide approximate answers to problems 1, 2 and 3 above (for preliminary results, obtained
within this framework, concerning radiation reaction effects beyond the quadrupole approxi-
mation see Blanchet & Damour 19845).

1.2, Assumptions

In this paper we shall consider what we shall call Multipolar—post-Minkowskian expandable
metrics (in short MPM metrics), i.e. formal series in powers of Newton’s constant G}

P ()= /g g = fP+GCHP+ G+ ...+ G+ ..., (1.1)

such that each term of the series /2#(x°, x%, x%, x*) admits a finite multipolar expansion associated
with the O(3) group of rotations of the spatial coordinates (which leave invariant
ri= ((x")2+ (x®)2+ (x*)®)} and t:= x/c), i.e.

lmax

Bl (x) = 2 Hof(r, 1) #4(O, P), (1.2)
=0

1 In this paper the symbol ~ is used to represent ‘of the order of’.

1 Notations:signature —+4 4 +4; greek indices=0,1,2,3; latin indices=1,2,3; g:=—det (&w)s
Jop =S = flat metric = diag (— 1, +1, +1, +1); N, Z, R, C are the usual sets of non-negative integers, integers,
real numbers and complex numbers; C?(U) is the set of p-times continuously differentiable functions in the open
set U (p < 4+ 00). See other notations at the beginning of Appendix A.
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where [, is some maximum value of / (depending on z), and where L denotes the multi-index
iy Gye--1y, nli=nlin’. %t with nf:= x%/r (latin indices = 1, 2, 3), and where 7 denotes the
(symmetric)-trace-free part of nE. The sum appearing in the right-hand side of (1.2) is
equivalent to a finite expansion in usual spherical harmonics: Y7*(@, @) (for a discussion of
this point and of the link between the ‘orbital’ expansion (1.2) and a fully irreducible tensor
spherical harmonics expansion see Thorne (1980) and Appendix A of this article). We restrict
our attention to finite multipolar expansions because this will allow us to prove rigorously many
results concerning /% without having to make strong assumptions about the convergence of
multipolar expansions. This way of proceeding is essentially equivalent to the ‘double (formal)
series’ approach of Bonnor (1959) (g = f+2X, 2, m? a?k,,), which leads to consider at each
step only a finite number of values of p and ¢ i.e. a finite order in G (m? = (Gm)?) and a finite
multipolar expansion (2, = X,;). It is, however, hoped that at the end of the construction of
¢ it will be possible to take the limit of an infinite number of multipoles.

We wish to investigate when such MpM metrics satisfy formally (i.e. in the sense of formal
series) the Einstein equations, which read outside the source

R, 49" (x")) = 0. (1.3)

In the present paper we shall impose (in the sense of formal series) three more restrictions on
¢(x). First, we shall use harmonic coordinates:

9y 9 (x) = 0. (1.4)

Second, we shall assume that the metric was stationary in the past, i.e. that there exists a time
— T such that
(< —T) = (8/dtg#(xt, 1) = 0). (1.5)

Third, we shall assume that before the time — 7" the metric was asymptotically Minkowskian
in the weak sense that

(t <—T)=(lim ((x, 1)) = f*). (1.6)

r—>

All conditions (1.1)—(1.6) are assumed to hold in some open domain D of R* of the type r > 7,
with 7, = 0 (in fact 7y > a = source radius). Among the assumptions (1.1)—(1.6) some will be
common to our sequel papers ((1.1)—(1.2)) but we leave open the possibility to relax the
auxiliary conditions (1.3)—(1.6) by considering in further works non-harmonic coordinates,
always radiating sources (taking the limit 7"—+ 00), etc...

The plan of this paper is as follows; in §2 we discuss the first step of the method: #$#, that
is the general solution of the linearized vacuum Einstein equations; in §3 we present some
mathematical tools which will be necessary to deal with the nonlinear higher steps 22 (n > 2);
in §4 we show how to construct algorithmically the general /2f; in §5 we investigate the
near-zone structure of the precedingly constructed general radiative metric g; in §6 and at
the beginning of § 7 we present some further mathematical tools which allow us to investigate
(in §7) the far-zone structure of a general radiative MPM metric. Some of the technical details
are relegated to the Appendixes.


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

o \

/A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RADIATIVE GRAVITATIONAL FIELDS 1. 385

2. GENERAL PAST-STATIONARY SOLUTION OF THE LINEARIZED VACUUM
EQUATIONS

The general past-stationary solution of the linearized harmonic Einstein vacuum equations
is not only the first step of our approach, but also will constantly be used in the higher steps
of our recursive analysis of the general solution of the nonlinear vacuum equations. Therefore,
although several authors (notably Sachs & Bergmann 1958; Sachs 1961 ; Pirani 1964 ; Thorne
1980) have already dealt with the linearized solution, the precise conditions of validity of their
formal treatments are often unclear, so we wish to start afresh and to present a rigorous,
self-contained, derivation of this solution within the assumptions (1.1)—(1.6).

Let D be an open domain of R* defined as {(x, ¢) |7 > r,} for some r, > 0. According to the
assumptions (1.1)—(1.6) the problem is to find the most general A% (x, t) satisfying in D

lmax
A ) = X /LR (1, 1), (2.1)
=0
A, 0) = 0, (2.2)
3, heh (3, 1) = 0, (2.3)
t<— T:%hi‘ﬂ(xi, ) =0, (2.4)
t<—T=lim (st t) = 0, (2.5)

r—>o00
where []:= f*0,, = A—c"20% /0.

Let us first notice that the restriction in (2.1) to having only a finite multipolar expansion
is mainly a matter of convenience when dealing with the linearized approximation. Indeed,
if one assumes only that 2% (x*) is of class C? in the open domain D, then 43#(x*) can be expanded
in an absolutely point-wise convergent multipole series (see Appendix B), each term of which,
k% (r, t), can be computed as the following integral over the unit sphere nén? = 1:

@+

A ) =" fdg(n) A b3t (rmf, 1) (2.6)

(where (2{+1)!!1:= (2{+1).(2{—1)...3.1 and dQ(n) = sin @ dO dP). Then without assuming
any further conditions one can apply the projection operator appearing in (2.6) to (2.2)—(2.5),
thereby deducing the same equations for 4 (r, t) as can be obtained by simply replacing the
finite sum (2.1) into (2.2)—(2.5).

Thus, let us start by looking for the most general C?(D) solution of (2.2)—(2.5) (we shall come
back to the more restricted assumption (2.1) only after (2.25)). Let us first investigate the
consequences of (2.2). One obtains

(07— (1/¢%) 0+ (2/r) 0, —L(I+ 1) /7*) W (r, 1) = O. (2.7)

Let us introduce the usual (Minkowskian) retarded and advanced time variables
ur=t—rfec, (2.84a)
vi=t+r/c, (2.85)
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and define Sluy v):= (v—u)"L k% (r, 1) (2.9)

(we suppress the indices on f for the sake of brevity). Equation (2.7) is then equivalent, in the

domain D, to
[(v—u)0,,+(+1)0,—(I+1)0,]f=0. (2.10)

The latter equation is a particular case of the Euler-Poisson-Darboux equation (£, ,)

E, .(f):= (v—u) 0y, f+m0, f—nd,f=0. (2.11)
It is easily seen that (assuming f sufficiently differentiable)
au Em,n(f) = Em,n+1(auf)’ (2-12>

therefore if fis a solution of E,, ,,, then 9, fis a solution of £, ,,,,. Darboux (1889) has shown
that the converse is also true if n # 0; that is, if g is a solution of £, ,,,, with n # 0, then there
exists a solution f of E,, , such that g =90, f (beware of the incomplete treatment of Copson
(1975)). Therefore if one knows the general solution f of E,, ,, with n # 0, then 0, f is the
general solution of E,, ,.,. Exchanging the roles of u and », and of m and =, leads to the
knowledge of the general solution of E,,,, ,:0,/f knowing the general solution of £, ,, (with

0):f. N
MEOSNOW B () = 0= 0) 0+ 00, f = B, [0 =) S, (2.13)
therefore the general solution of E, | is
Uu)+ V(v
ﬂJ=—%jfl, (2.14)

where U and V are arbitrary functions of one real variable which are at least of class C.
Hence, by the preceding argument, the general solution of £, , ,.,, with /e N, which is
precisely the equation to be solved, (2.10), is

2 a“[U@+V@}

— 2.15
f 11 9ut v v—u (2.15)
where U and V are arbitrary (C**1) functions of one real variable and where the factor 2/(I! ¢**1)
has been introduced for later convenience. From (2.9) we then get the general solution for
k(7,1 2
af 2
h‘;‘{=—2l (v—u)! az Z(UL (u)+V,—j’(v)), (2.16)
[t Ou' Qv v—u

(where U% and V% have to be, in fact, in C'*3(R) for 4% to be C?(D)). Expanding the right-hand
side of (2.16) by means of the Leibniz formula, and going back to the 7, ¢ variables, we obtain
(<)} & P@=)! PU=r/e)+ (=P DV(t+1/0)

2,2 =) R ’

ht = (2.17)

where D U(x) = dU/d#’. Thanks to formula (A 354) of Appendix A, the result (2.17) can be

re-expressed as bl N
ﬁLh‘}ﬁ:éL[Utﬂ(t r/c)+VLﬂ(t+r/c)], (2.18)

r

where 61, denotes the tracefree part of 0; ; ; =0; 9;...0; (see Appendix A). Up to now we
have obtained the general solution of (2.2) alone. At this point let us impose (2.4) (past-
stationarity). From (2.18) and from (A 30), which says that 0, is proportional to
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(r~10/dr)t = 21(0/0(r?))!, we see immediately that, when ¢t < — T, 0, U¥(t—r/c) + 0, V¥ (t+71/c)
must be an odd polynomial in r of maximum degree 2/— 1, with coefficients depending on ¢.
Writing that the latter polynomial must be cancelled by the operator 02 — 02, we find that there
exist 2/ constants C; (2 <j < 2{+1; indices suppressed) such that, when ¢t < — 7,

2l+1

O, U¥(t—r/c)+0, V¥ (t+1/c) = j§2jCj [(t=r/c)t— (¢+7/c)i71]. (2.19)

Separating 0, U from 0,V and integrating, we find that there exist 2/+3 constants
A, B, C;(1 <j < 2I+1) such that, when ¢t < — T,

U (t—r/c) = A+2l}_1§,1 Ci(t—r/c), (2.20)
i=1

Veb(t+r/c) = B—2l2+1 Cy(t+r/c). (2.21)
i=1

From (A 33) and (A 36) we see that, when t < — T,
Ab 13 = Op [(A+ B)/r—2(Cypyy /1) 121, (2.22)

Now, if we impose (2.5) (past-asymptotic Minkowski behaviour) we find that C,,,, must be
zero. Moreover, as, even when ¢ is restricted to be anterior to — T, the advanced time ¢t+7/¢
can take any real value, (2.21) will give the value of V4 all over the definition domain of A%,
Taking into account C,;,, = 0 and the formula (A 36), we will not change the value of A%
if we replace everywhere the function (¢, r) - V4 (¢+r/c) by the function

(¢, 1) >V, (t—r/c) = B— %él_‘,l Ci(t—r/c)! (2.23)

(note the change from advanced to retarded time). Keeping the notation U% for the sum
Usb(t—r[c)+ V¥ (t—r/c), we conclude that the general C?(D) solution of (2.2), (2.4) and (2.5)
can be represented in D as an absolutely point-wise convergent multipolar series of the form

r

Wh(x, 1) =20, (_[L?’(L—_’LC_)) , (2.24)
l

where each U%(u) (the old U plus V) is a function of class C'*? which becomes a constant
(= A+ B from (2.20) and (2.23)) when u < — 7. Reciprocally, the representation (2.24) will
satisfy the requirements (2.2), (2.4) and (2.5) if we choose some Us constant for u < — 7T and
such that the series converges point-wise to a function of class C?(D).

To impose the remaining ‘harmonicity condition’ (2.3), it is convenient to follow Thorne
(1980) and to algebraically decompose the objects U%. From (2.24) it is clear that U% can
be chosen to be symmetric and trace-free with respect to the indices L: Uy = U%, where the
brackets ) denote the ‘symmetric—trace-free’ part (see Appendix A). Now if we consider the
objects U, U¥, UY from the point of view of their transformation properties under the O(3)
group of spatial rotations (which preserve (2.1)—(2.5)) they bear both ‘spin’ indices (none, i,
i; spin s < 2) and ‘orbital angular momentum’ indices ({L) = {i,4,...7;); orbital angular
momentum = /). Then it is convenient, following Thorne (1980), to perform an ‘addition’ of
‘spin’ and ‘orbital angular momentum’ indices (J = S+ L), i.e. to decompose U% into ten

31 Vol. 320. A
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irreducible algebraic pieces constructed by means of the Kronecker tensor (dy;), the Levi-Civita
(pseudo) tensor (e;;) and ten symmetric—trace-free (abbreviated as sTF) Cartesian tensors
Taygs Tigygs - Tiaoys (J = iy...4; with |I—2| < j < [+2) (see Appendix A for further explan-
ations and references). Replacing this decomposition into (2.24) and converting the derivative
operators to their usual (reducible) form 0; we must do some reshuflling because of the traces
of 0, (by using A/ F(t—r/c)) = ¢ 2102 F(t—r/c) in D). Finally we obtain the following
representation of 4% by means of ten stF tensors 4 (u), B;(«), ..., J,(«) (skipping the hats on
them) which are sufficiently differentiable functions of the retarded time u = ¢{—r/¢, and which
are all constant if ¥ < — T (this follows from the same property of U(u) and the fact that
A(u), ..., J(u) are constructed algebraically from U(x) and 0% U(u)):

he = X 0 (rAL(w), (2.25a)
>0

ht = z‘éo Op, (r 'Br(u)) + 2 {011 (r " Cip—1 (1)) + €145 Oq 1 (1 *Dypp—4 ()}, (2.250)

121

B = l§0 {055, (r Y EL(u)) + 845 0, (1 (u))}
+ l§1 {0016 (r'Gyy L1 () + €403 Oy ar—1 (T Hy 1 (1))}

+ l?z{aL_2(r_llijL_2(u)> + aaL_z(r_leab(i Jj) bL—2(u) )}’ (2.256)

where L—1 denotes the multi-index ¢, ¢,...4,_;, L—2:=1,...1;,_,, and the parentheses denote
symmetrization: Ti;; = (3) (7j;+ T};). Note that if the multipolar series appearing in (2.24)
is truncated there is no problem for reshuffling the terms of (2.25) in an arbitrary manner, but
if it is an infinite series the convergence of the algebraically decomposed series (2.25) is (a priori)
implied by the convergence of (2.24) only if one always keep together the algebraic sub-pieces
having (for instance) the same total number of indices on the sTF tensors (which is / in (2.25)
and which corresponds to what was noted above j in J = L+.S) (see Appendix B). As we are
going, in the following, to play separately with Ghese sub-pieces we shall now go back to our
initial assumption (1.2) or (2.1) restricting our consideration to truncated multipolar
expansions.

Let us now impose to (2.25) the ‘harmonicity condition’ (2.3). As the decomposition (2.25)
is easily checked to be unique (although not orthogonal, which causes the problems of
convergence evoked above) it is easy to deduce from the ‘harmonicity condition’ (2.3)
algebraic and differential (because of A(r! F(u)) = ¢"%710% F(u)) constraints among the 4s,
Bs, ... and Js. To express simply these constraints let us define the following new sTF tensors:

(2 0) My(u):=A,+2VB, +®PE, +F, (2.264)
(I=1)8S,(u):=—D,—1OH, (2.26)
(1= 0) W,(u):=B,+1VE,, (2.26¢)
(12 0) X,(u):=1E,, (2.264)
(1= 0)Y,():=—WVB, —®F, —F,, (2.26¢)
(I=1)Z,(u):=1H,, (2.26f)
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where ™ F(u) denotes d "F/d u™. It is easily seen ((2.29) below) that there is a one to one
relationship between theset{4;, B;, D,, E;, F;, H;}and thenewset{M,, S;, W, X;, Y, Z,}.
Then we can express the ‘“harmonicity constraints’ in terms of the Ms, Ss, Ws, Xs, Ys and Zs,
together with the old Cs, Gs, Is and Js. We find ¥ = 0,

OM =0, (2.27a)

®OM, =0, (2.275)

mg, =0, (2.27¢)

and

C,=—WOM, -0y, (2.284)

G, =12Y,, (2.285)

I, = ®M,, (2.28¢)

J, =208, (2.284d)

Equations (2.28), together with the ‘inverse’ of (2.26), i.e.

A =M, —OW, +PX, +7,, (2.294)
B, =W,—WX,, (2.296)
D,=-8,-WZ,, (2.29¢)
E, =2X,, (2.294d)
F,=—OW,—@x, —V,, (2.29¢)
H, =2Z,, (2.2971)

show that the general harmonic 4% can be expressed uniquely in terms of the Ms, Ss, Ws, Xs,
Ys and Zs and that these variables must satisfy (2.27) (and Y = 0). Apart from the latter
equations, the only other constraints that the AMs, ..., Zs have to satisfy are that all of them
must become constant when u < — T This implies from (2.27) that not only M (x) and §;(u)
but also M;(u) have to be always (Vu) constant. Replacing (2.28) and (2.29) into (2.25) leads
to an explicit representation of A% in terms of unconstrained quantities. For later convenience,
let us replace our ‘old’ M, and §; by some ‘new’ quantities:

MEBew — _12]1(— )l Aol (2.304q)
SBew — _13[(J 4 1)1/]] (—)! 9, (2.300)

and let us use the letter M to symbolize the set of sTF tensors {MFe¥ (u), S1¢%(u)}, the letter W
to symbolize the set {W, (u), X, («), Y, («), Z,(u)} and the square brackets [ ] to denote a
functional dependence. We then get:

AIM, W] = L [M]+wf[ W]+ Puw[ W] —-f“ﬂaﬂw/‘[W] (2.31)

with (dropping the superscript ‘new’ on M, and S;)

!
hoan1[M] =—%1§o(—ﬁ)—aL(r_lML(t_r/€))’ (2.320)

31-2
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) 4 —)!
Rl =+ T R0, (7 O My = r/0)

(=) .
+€3 l§1 (I+1)! €iab Oar,—1 (T Spr—1 (E—1/0)), (2.320)
A 4 —
M) =5 = Gl o @My y-r10)
8 (_)ll —1 )
Ta 22 (H_l)!aaL-z(’ €ab(i Sj)bL—z(t—r/C)), (2.32¢)

and with, the indices & and A in (2.31) being raised with the flat metric f* = diag
(_13 +1’ +1a +1):

W [W]l= 2 0,(r *Wy(t—r/c)), (2.334a)

P

wiW) = 3 0 X,y (t=1/0))

+l§1 0p 1 (7 Yoy (=7/0)) + €405 Oq 1 (1 Zp 1 (E=7/0))}. (2.330)
The suffix ‘can’ in 4% [ M] stands for ‘canonical’ because (2.32) is the canonical form of the
linearized harmonic gothic perturbation used by Thorne (1980), which clearly differs from the
general /[ M, W] only by an infinitesimal (harmonic in the domain D) coordinate transformation
0x* = Gw*[W]. The coefficients in (2.30) have been chosen so that in the limiting case of a
very slowly moving, negligibly self-gravitating, and negligibly self-stressed source (with mass
density p) the ‘new’ M, and §;, are simply given by (Thorne 1980)
M, .= Jd3xpx<i1xi2...xil>, (2.344)

157

1.0

S, . . = Jd3xpe“b<ilxi2...xil>x“vb. (2.34b)

In the general case M, and S; will not be related by such simple linear relations to the
stress—energy tensor of the source but we shall still call them respectively the mass multipole
moment (electric type) and the current multipole moment (magnetic type) of order /. In the
following, these moments will only play the role of ‘functional parameters’ allowing to
represent the general vacuum metric as a complicated nonlinear retarded functional of them.
They will reacquire a direct physical meaning only in subsequent works studying the asymptotic
behaviour at infinity of the metric or its matching to a (possibly strongly self-gravitating)
source. Gathering our results we get finally the following representation theorem.

THEOREM 2.1. In an open domain D = {(x, t)|r > ry, = O} the most general linearized harmonic
vacuum metric, g3f, = f*f + Gh3#, which admits a truncated multipolar expansion and which, whent < — T,
is both stationary and asymptotically (in space) Minkowskian, i.e. the general solution of (2.1)—(2.5), admits
the following representation

#E =P +GhF[ M, W], (2.35)
with
KAIM, W] = b, [M] + [ W]+ Fw [ W] —f*40, w [ W], (2.36)
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where M = {M (u), S, (u)} and W = {W(u), X (u), Y}, («), Z(u)} are sTF—tensor functions of one
real variable u, constant (i.e. independent of u) when u < — T, with M, M; and S; always constant, and
where h*8 \[M] and w*[W] are given by (2.32) and (2.33).

This theorem is stated here for sufficiently differentiable 4;s, Ms and Ws (that is, of class C"
for some n). To find precisely the value of n appropriate to each M or W in order that A% be,
for instance, C*(D), one should go back precisely through each step of the proof. Henceforth
we shall assume, for simplicity’s sake, that the Ms and Ws are all smooth (C*(R)) and therefore
also that % is C®(D) for any D ={(x,¢)|r>r, > 0} (the time-axis r = 0 being always
excluded from D).

As a final comment let us indicate that the physical meaning, in the linearized theory, of
the constancy of respectively M, M; and §;, is the conservation of, respectively, mass, centre
of mass position and spin. Our constraint on past-stationarity means that we are always using
a ‘centre of mass frame’ where the linear momentum is zero. It would probably be safe to
strengthen our assumptions by requiring the choice of a suitable time-axis such that M, = 0
(‘mass centred frame’) but it will be more convenient to leave M; unconstrained.

3. MATHEMATICAL PRELIMINARIES

To investigate, within the assumptions (1.1)—(1.6), the existence and the structure of general
solutions of the vacuum Einstein equations it will be necessary to use repeatedly the properties
of special classes of functions of R*. We gather here the necessary definitions and some useful
results. Some further mathematical tools, concerning special classes of functions of R? and R*
will be expounded in §6 and §7.

3.1. The ON(rN) class

Definition 3.1. A complex valued function of R*: f(x, t) is said to belong to the O (rV) class
of functions, for some non-negative integer N (or, simply, is said to be O (r)) if the following
properties hold: Vge N, f@(x, ¢):= 09f/0# exists everywhere in R* and satisfies

() 3TeR such that /@ (x, {) = 0 when t < — T}
() fD(x, t) is of class CN(R?);
(¢) Vt,€R,AM > 0, 3d > 0 such that (with r:= (8;; x* x/)3)

(r<d)= (I/D(x, ty)| < Mr™). (3.1)

In words, an O¥(rY) function is a past-zero function that is, together with all its time
derivatives, both C¥(R*) and O(rY) when r—0 with fixed ¢ By a slight abuse of notation we
shall often write simply f(x, {) = O¥(#V), it being understood that f = OY (r¥) and g = OV (V)
do not imply f= g!

As a first consequence of the definition we can state that Vm < N the partial derivative
Oiy. i, S P (X, 8) (i ooy by = 1, 2, 3) Is uniformly, over any time interval [ — T, 4], O(rN~™) when
r—0, i.e. that Vm < N, Vi, e R, IM > 0, 3d > 0 such that

(t<tyandr < d) =>( _onf@ (x, t) ! < MrN‘m). (3.2)

Oxh.. .0xtm

This is easily proven by applying to d; _; f@(x, ) the Taylor formula (up to the order N—m)
with integral remainder between the points (x, ¢) and (0, ¢). First, the case m = 0, together with
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(8.1) shows that Vn < N—1,0; ; f@(0, #) = 0, then the continuity of 3; ; f@(x,1) gives
a uniform bound which leads to (3.2).

A useful criterion for proving that a function f(x, ¢) that is a priori defined and regular only
outside the time-axis (where r # 0) can, however, be extended to an everywhere regular OV (")
function is the following.

LemMA 3.1. Let N and K be some non-negative integers and f(x, t) a function such thatVqgeN, f@(x, t)
is defined on R, x R (with RS, : = R®—{0}) and that:

(i) AT such that fD(x, t) = 0 when t < — T,
(i) fD(x, ) eCN (R xR),
(iii) V¢ eR, Vm < N, dM > 0, 3d > 0, Ip = O such that:

(t<tyand 0 <r<d)= (| éil__.imﬂ‘”(x, )| < MrET1=m|lg 4|P), (3.3)

then f(x, t) can be extended, by continuity, to a function on R* which is ON'(r¥') with N’ = inf (N, K).

An outline of the proof of this lemma is given in Appendix E.

The following basic stability properties of the OV (rV) classes are easily deduced from the
definition 3.1, equation (3.2), or lemma 3.1 (for simplicity’s sake we use the ‘notation’
ON(rN) 4+ ON(rN) = ON(rV) instead of fe ON(rV) and ge ON(rV) = f+ge OV (rV), etc. ...).

LemMA 3.2. (Algebraic and differential stability of ON (rN)) :

(i) ONGEN)+ON(N) = ON(#N),
(il) ON(rN) x ON(rN) = ON(rV),

(iii) Vge N,g;ozv( Ny = ON (),

(1V> vmzo X < N, ail...im ON(rN) — ON—m(TNwm),

(v) YF(t)eC*(R), VIeN, Yp = 0 (with [+p > 0),VaeZ (with n* = n®r...n%):

ifa> LRt (g1 0V (1) = ON(),
Cif —(N=1) Sa < 0:F()n (1g7) 1 0N (1Y) = ONFa-i(p¥ o),

The next important stability property of the O (rV) classes is the stability under the ‘retarded
integral’, i.e. the integral operator of the ‘retarded potential’, defined (when it exists) as

1 [ d 1
-1 N e — / oy —
(OF4) (¢, )= =5 [ ¢ = =), (3.4)
We shall often use the slightly improper notation: (CIg'/f) (x', ¢) = Og!(f(x, ?)), distinguish-
ing, when it is convenient, the ‘field point’ (x’, ') where []g!fis computed, and the ‘source
point’ (x, t) on which one integrates.

Lemma 3.3. (Integral stability of ON (rN)) : if f(x, 1) is ON (rN) then there exist some functions Fy __; (2),
such that

(i) £, ) =0 when t<—T,

(i) £, () €C*(R),
(i) (OgY) (%, 0) =S F, () eON (™).
=0

An outline of the proof is given in Appendix E. Symbolically we can write lemma 3.3 as
(L = 1,...55, nk = n¥r...n%) N
gt ON(rN) =3 nly F, (1) +0N(7N). (3.5)

=0
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3.2. The L™ class

The use of the OY(rN) classes of functions is conveniently completed by the introduction of
some other classes of functions which involve the nth power of the logarithm of » when r—0:
the L™ class.

Definition 3.2. A complex valued function f(x, t) defined in R} x R is said to belong to the
L™ class of functions (for some ne N) if the following properties hold: for any positive integer
N there exists a finite sum (A9 = n¢in’e.. .née> with nt = x%/r)

Sn(x,t) = X Foap(t) A1 (Ig1)?, (3.64)
p<n
where a€Z, peN and p < n, and where the coefficients F,,,(¢) are both C*(R) and zero in
the past (¢ < — T for some fixed T'), such that the difference f(x, t) —Sy(x, t), a priori defined
only in R% X R, can be extended, by continuity, to be OY (r¥) (in R%),

VNeN, f=Sy+O0N(N). (3.65)

Note that in definition 3.2 we have restricted the powers a of 7 that appear in S to be (positive
or negative) integers because this is going to be the case in the following applications but it
is not necessary to do so in general, the essential properties of the L™ classes are preserved if
aeC.

In short, we can say that L” is the class of functions that admit, when r—0, an asymptotic
expansion to all order N, along the scale (or gauge) functions 7%(lg7)?, with 0 < p < n, with
coefficients admitting a finite multipolar expansion (the coefficients of which are smooth and
zero in the past), and with a ‘good’ OV (V) remainder. Note that all fe L” are C*(R3 x R)
and thatn < m=L" < L™,

The basic stability properties of the L™ classes under algebraic and differential operations
are as follows.

LemMmA 3.4. If f(x, t) e L™ and g(x, t) € L™, then

() fix, f) +g(x, {) € Lswp(n,m)
(ii) f(x, t).g(x, t)yeLrt™,
(iii) VgeN, VpeN, of ai‘...ipf(x, t)eLn.

Proof. (i) is easily deduced from definition 3.2 and lemma 3.2; to prove (ii) let us first notice
that because of the uniqueness of asymptotic expansions for any given function f the powers
of r must have a (possibly negative) minimum value ¢,(f), independent of N. Therefore, when
considering the product f. g one must, if inf (¢,( f), a,(g)) < 0, insert the ‘expansions’ of f and
g (f=S8y+0N (M), ...) up to the order N' = N+ 1—inf(a,(f), a,(g)), and then apply the
last property of lemma 3.2; (iii) is also deduced from lemma 3.2 if one uses N' = N+p. W

Finally the most important property of the L” class is its behaviour under the integral
operator []z! (the ‘retarded integral’ defined by (3.4)). The first difficulty is that the action
of (Jg! on a function fe L™ is not a priori defined, because f will often (if a,( f) is too negative)
not be locally integrable near x = 0. Therefore a first step will consist in defining a convenient
generalization of the operator [Ji! appropriate to the L™ class. There is no unique way to do
that, but it proved very convenient to define such a generalization by using an approach based
on complex analytic continuation. This type of approach to define an otherwise divergent
integral has been introduced by Marcel Riesz (1938) and has since been used (and found
indeed very useful and often superior to other methods) in many different contexts: quantum
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field theory, classical theory of point particles, distribution theory, general relativistic dynamics
of condensed bodies, to quote a few (for references and an introduction to the method see
Damour 19834). In particular it was essentially the original method of Riesz which has been
used recently, with a complex parameter denoted 4, in a study of the general relativistic
equations of motion, including radiation reaction effects, of two condensed objects (Damour
19834, b). Here we shall introduce a somewhat different approach (accordingly we shall use,
instead of 4, the letter B to denote the complex parameter). The final results of this approach
are equivalent to the ones obtainable by means of Hadamard’s concept of ‘partie finie’
(Hadamard 1932); however, the use of analytic continuation provides one with a more flexible
and powerful technical tool.

Before coming to grips with the real problem, let us give a simple example of the use of
complex analytic continuation to associate a finite number to a divergent integral. Let us
consider a function, f, of one real variable r, of the following form: f(r) = X, 7%, where 2
denotes a finite sum over a€Z (so that a = —n, for some n,€N) and where the ¢,s are some
(real or complex) coefficients. Because of the pole-like singular behaviour of f(r) when -0,
the integral [ = [ (1’ f(r)dr will be in general undefined. Introducing a complex parameter B,
let us consider the function fg(r):= rBx f(r). If B belongs to the right half-complex-plane
D:= {B; Re (B) > n,— 1}, f5(r) will be integrable so that we can define the following function
of a complex variable: BeD->F(B):= | (1) rBf(r)dr. An easy explicit computation yields
F(B) = X ¢,(B+a+1)7}, and F(B) is seen to be analytic in its domain of definition D). But now
the function of B: G(B):= X ¢,(B+a+1)"! is defined and analytic all over C":= C—Z, the
complex plane deprived of the integers. Hence we can extend, in a natural way, the definition
of F(B) = f{l) 7B f(r) dr to all Bs of C’ as being the analytic function G(B) (‘analytic continuation’
of F(B)). In this case we see immediately the possibility of this analytic continuation because
we can use the same formula Y ¢,(B+a+1)7! all over C’. In the general case, it will not be
possible to exhibit such an explicit formula (G(B)) for F(B) valid all over C’, but the main
interest of analytic continuation into some preassigned domain, which for the cases of concern
to us here will be from D to C’ (in fact C’' U D), is that when it exists it is unique. Therefore
it is sufficient to prove that a given function F(B), originally defined and analytic only in some
open domain of C, can, by any procedure (for instance step by step), be continued, as an analytic
function of B, all over C’ to be able to speak of the uniquely defined F(B) all over C’. Coming
back to our simple example (F(B) = | (1] B f(r)dr), if B = 0 is not a singularity of the analytic
continuation G(B) of F(B) we shall associate to the divergent integral f(lrf(r) dr the number
I:= G(0). On the other hand, if B = 0 is a singularity of G(B) we shall associate to the divergent
integral f(l’ f(r) dr the coefficient, say 7, of the term in zeroth power of B in the Laurent expansion
of G(B) around B = 0. In both cases one has I =X, . _;¢,(a+1)"" (and [ coincides with
Hadamard’s ‘partie finie’ of f(lrf(r) dr). We shall now generalize this procedure to define a
convenient generalization of the integral operator [Jg! acting on an arbitrary function of the
class L™.

LEmMA 3.5. Let f(x, t) € L™ and Be C, then the function of B, calculated by (3.4) for any fixed point
(x, ) eRE xR,

F(B) = Og*((r/n)"f(x, 1)) (3.7)
has the following properties :
(i) F(B) is defined and is analytic in B in some half-plane Re (B) > by;
(ii) F(B) can be analytically continued all over C':= C—Z.
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(In (3.7), r; is a constant, to be chosen at will, that plays no role in the following reasonings.
Therefore we shall here choose units such that , = 1. We will come back to the choice of r,
in §5.)

Progf. By definition, we know that for any positive integer N, B f can be written as a finite
sum of terms of the type F(¢) A9 rB*% (Igr)P (where, as remarked above, the powers of a are
bounded from below, YN:a > q,), plus a ‘remainder’ rB ON(r¥). Moreover, each of the
preceding terms are zero in the past. Therefore all possible problems concerning the
convergence of F(B), equation (3.7), for any fixed point (x’, ') € R x R, will come from the
behaviour of rBf when r—0. First it is clear that if we choose Re(B) large enough
(> by = —inf(a,, 0)) all the terms constituting r2 f will be continuous everywhere. Therefore
F(B) is at least defined in the half-plane Re (B) > b,. Now, if we formally differentiate F(B)
with respect to B under the integral sign, by using (0/0B) r2 = rBlgr, we are led to study the
triple integral [Jg(rB (Igr)f). With B in the previous half-plane, this new integral has a
compact support and its integrand is continuous in all its variables; therefore, by a standard
theorem, F(B) is analytic and 0F(B)/0B = [(Og*(rB (Igr)f). This proves (i). To prove (ii), we
remark that F(B) can be written as a finite sum of terms, plus a ‘remainder’, that are all
separately defined and analytic in the half-plane Re (B) > b,. It is then sufficient to prove that
each of these terms can be analytically continued, as far as wished, to the left in C’. First, by
iterating what has been just said about OF(B)/0B we see that we can write

O (4@ rB+e (Igr)? F(t)) = 8° /0BP {[Og} (A2 1P+ F(1))}. (3.8)

It is then sufficient to study the analytic continuation of terms without logarithms. Let us
also define, as a short-hand notation, the following function of B (analytic in
C—{—-a—q¢—3, —a+q—2})

7Q yB+ata

ATH (A7) = (Bta+2—q) (B+a+3+q) (3.9)

This notation is justified by the easily verified fact that (A:= 0% 9;;)
A(A=1(49 /B+a)) = 4@ Ba. (3.10)

Using this notation let us now prove the identity (where F(¢) is any C*(R) function, zero in
the past (¢ < —7') and where P F(¢):= 02 F(¢) /Of)

CIR(F(1) 79 rB+a) = F() A=1(7€ /B+a) +612 RN F(f) A1 (A9 rB+a)). (3.11)

The proof of (3.11) is as follows. If we first take Re (B) large enough, all the functions appearing
in (3.11) will be well differentiable in R?, then it is easily seen that the equality deduced from
(3.11) by applying the d’Alembert operator [] = A—¢20} to each side of (3.11) will be
verified. Now, as both sides of (3.11) are well differentiable, are zero in the past and as their
d’Alembertian are everywhere identical, we conclude from the uniqueness theorem for the
wave equation (see e.g. Fock 1959, §92), that is essentially from the Kirchhoff formula, that
the equation (3.11) must be true. More generally we obtain by iterating (3.11) (with
A7%:= (A=1)* the kth iteration of the operator A~! of (3.9))

8

DEI(F(I«’) 7e rB+a) — 2 ——1——(2"‘)F(t) A—m—l(ﬁQ rB+a)+

2m
m=0¢

1

628+2

Dﬁl((zs+2)F(t) A1 (,AlQ rB+a) ) .
(3.12)

32 Vol. 320. A
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The identities (3.11) and (3.12) have been proven only when Re (B) is large enough, but, by
the uniqueness of analytic continuation, these identities will be valid in the whole domain of
the B plane where any of the sides of these identities can be analytically continued. From (3.9)
we see first that A=™71(79 rB+®) with for definiteness a€Z, is certainly an analytic function
of B in C’ = C—Z (with some poles at some integer values of B) and that it involves r to the
power B+a+2+42m. This last fact improves the convergence of the retarded integral
appearing in the right-hand side of (3.12). Indeed, from the arguments used to prove (i), we
see that this integral, and thus the right-hand side of (3.12) is analytic in the domain
Re (B) > —a—2s5—2 except some integers. This proves, therefore, that the left-hand side of
(3.12), i.e. IR (F(¢) A9 rB*®) can be analytically continued in the domain Re (B) > —a—2s—2
except some integers. As this is true for any integer s = 0 (because F(¢) € C*(R)) we conclude
that [JR}(F(¢) A% rB+®) can be analytically continued in €’ = C—Z. Thanks to (3.8), the same
is true of [Jg!(F(t) A rB+® (Igr)?). Finally, as the ‘remainder’ term of F(B): [Jg! (® OV (rV))
is clearly analytic for Re (B) > — N and that N can be chosen arbitrarily large, we conclude
that F(B) can indeed be analytically continued all over C’. |

From the preceding proof we conclude also that F(B), equation (3.7), will have at most
multiple poles at some integer values of B (because the denominators in (3.9) and the
differentiation 0?/0B? in (3.8) can generate at most such multiple poles). We are mainly
interested in the neighbourhood of B = 0 because we want to generalize the usual ‘retarded
integral’ [Jg'/f, hence we introduce the following definition.

Definition 3.3. Given fe L™, we shall call ‘finite part of the [generally divergent] retarded
integral [Jg'f’ the constant term Cy(x’, ') (zeroth power of B) in the Laurent expansion of
the meromorphic function [(Jg! [(r/r,)B f(x, {)] near B = 0:

OR [(0/r)2fix, 0] = 3 C(x', ¢) B. (3.13)

=17l

We will denote it (remember that the ‘field point’ (x/, ') e R x R)

Col's €)= FP OO [(1/m) 2, )] (3.14a)
or, more simply, if there is no ambiguity:
C,=:FPOg /. (3.145)
The two fundamental properties of the operator FP [Jg! are as follows.
THEOREM 3.1. We have: () VfeLn, O(FPOR/) =/ (3.15)
(i) fe L™= FP[Og'felr*. (3.16)

(Note the increase by one unit of the superscript n).
Proof. The property (i) is obtained by noting first that, for BeC’, (choosing r, = 1)
O(O%' (BS) =2/, (3.17)
(Indeed (3.17) is true if Re(B) is large enough for the function r®f to be sufficiently

differentiable all over R%, then it is still true (in R3 x R) for Be C’ by analytic continuation.)
By using (3.13) and rBf = eB87 f= 32 | B/ (Igr)! f/j! we see generally that

j<0=0C(x, 1 =0, (3.18)

= 0=00x 1) = (lif)jf(x, f). (3.19)
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The particular case j = 0 yields (3.15). To prove (ii), we have to control better the pole
structure of [Jg! (rBf) near B = 0. From the proof of lemma (3.5) we see that the B = 0 poles
in ap

OR %) = % 55

psmn

(Og! (F(g) a%rB*2)) + Og! (78 OV (rY)) (3.20)

will come, if they exist, only from the ‘S, terms’ in the right-hand side of (3.20). Moreover,
we note that the poles appearing explicitly in (3.9) will always stay simple in the iterated
operator A=™~1(7Q yB+4) (because their positions differ by an odd integer and they jump, at
each iteration, by 2 units). Hence we can write

A—-m—l(ﬁQ rB+a) — (D(B)/B) 79 rB+a+2m+2’ (3'21)
where D(B) is a rational function of B which is analytic (no poles) at B = 0. Now the crucial
step is to notice that the finite part at B =0 of 0?/0B?(D(B)rB/B) is proportional to the
coefficient of BP*! in the MacLaurin expansion of D(B)r8 = D(B) eB!8"  which is clearly a
polynomial in (Ig7) of order p+1, that is:

op p+1

FP @E(F(t) A~m=1(4Q yBray) = F(f) 49 rrr2m+2 Y g (Igr)e. (3.22)
B=0 i=0

Replacing now (3.12) into (3.20), and taking the finite part, we obtain

d 0P (CME (¢
FPOR (B = 2 X FP——( sz(>
B=0

P
pLn m=OB=oaB

A—m—l (ﬁQ rB+a))

_[or (estdF;gy 5 ~

+ Z FP DRI {@(WA $ l(ﬁQf +a))}+ DRI(ON(?’N)). (323)
p<nB=0

The first sum in (3.23) is known from (3.22). Moreover, if s is large enough it can be checked

that it is possible to commute FP and [J7! in the second sum. Then, if 25 > N—a,—1, we see,

thanks to (3.22) and lemma 3.2 (v), that the second sum is of the type [Jz'(O¥ (rV)). This leads,

for any given N, to

51’ OR'(Ef) = 2 FOa¢r (Ign?+ O (0OY(Y)), (3.24)
=0

p<ntl

where now the maximum value of the powers of Igr is n+ 1. A final recourse to lemma 3.3
(equation (3.5)) allows us to break the ‘remainder term’ in (3.24) in a ‘sum term’ plus a ‘good’
O¥(rN) remainder. This concludes the proof of theorem 3.1. [ |

As a final comment we can say that theorem 3.1 proves that the operator FP[J3! is a
convenient generalization of the usual ‘retarded integral operator’ [Jz' when dealing with
‘singular sources’ f belonging to the L™ class. Indeed, it provides a solution g of the
inhomogeneous wave equation []g = f (which is, like £, zero in the past), and this solution lives
in the next class L”*1, so that it is possible to ulerate the operator FP [Jz!. This is what we are
going to do in the next section.

4. GENERAL PAST-STATIONARY MPM SOLUTION OF THE VACUUM EQUATIONS

The aim of this section is to construct algorithmically the most general (formal) solution of
the vacuum Einstein equations fulfilling the assumptions (1.1)—(1.6). Let us recall first that by
inserting the post-Minkowskian expansion (1.1)

gP () =gg = fP+GhP+ .. . + G hP+ . (4.1)

32-2
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into the Einstein tensor density 2g(R* —1Rg*#) = :2g E*/ one obtains

2gE = X G, HH (hy) — N3f (hyysm < )}, (42)
n=1
where
HowP (h) = fropef 4 fobhi — fovhbe — foupay (4.3)

is linear in 4%, but where N% is a nonlinear algebraic function of the ‘previous’ 4, (m < n)
and their first and second partial derivatives (with N%¥ = 0). Symbolically, the structure of N%/
is (with indices and coefficients suppressed)

n
N,= X > €007 ol (4.4)
a=2 Mm+..+my=n
my<mn

where the two partial derivatives have to be distributed (possibly with repetition) among the
hm,s (for instance Ny ~ h, 0 h, +0h, Oh,). From the contracted Bianchi identities (B, s=0)
and the structure of H*# it is clearly seen that if the vacuum Einstein equations are satisfied
up to order n—1 (included) then the ‘nonlinear source’ N, satisfies identically

0, N = 0. (4.5)

Imposing now the harmonicity condition (1.4) (at each order n) as well as the extra multipolar,
past-stationarity and asymptotic conditions (1.2), (1.5) and (1.6), we get the following
sequence of systems to be solved (with [J = f*0,,).

Okt = N (h, sm < n), (4.62)

0,k = 0, (4.65)

= ll“i I (r, &) ik, (4.60)

1< —T=0,hf =0, (4.6d)

t<—T= lim k% = 0. (4.6¢)
fim

To find the most general solution of (4.6), i.e. the most general past-stationary—asymptotically
Minkowskian vacuum mpm metric, in harmonic coordinates, we shall proceed in three steps.
First (§4.1) to construct a ‘particular’ solution of (4.6), second (§4.2) to show that this
‘particular’ solution ‘contains’ the general solution, and third (§4.3) to show the use of a
simpler ‘canonical’ solution.

4.1. Construction of a particular solution: 70

THEOREM 4.1. Guwen a finite set of C*(R) stF tensors M(u) = {M(u), S, (u)} and W(u) =
(W (w), Xp(u), Y (u), Zp,(0)} ({ < lpax [M, W) arbitrary except for the constraints that all
the functions M (u), ..., Z;(u) are constant when u < — T and that M, M; and S; are always constant,
then there exists an algorithm which constructs, for any neN, ten functions of R% xR
(which are functionals of M and W): K& [M, W](x,t) solving (4.6) and such that
(B o (X, 8) — B (X, — T)) € L™7L,

partn partn
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Proof. Let us first decompose, for convenience, M(u) and W (u) in their ‘stationary’ parts
M, W (defined as their constant values before — 7)) and their ‘dynamic’ parts
pMu):= M(u) —M, yW(u):= W(u)—gW (which are zero before — T'). Then the first step
of the algorithm consists in defining /25 .., [M, W] to be the right-hand side of (2.31), with
(2.32) and (2.33), i.e.

harr [M, W= kel [M] 48w/ [ W]+ 0w [W]—/*/ 0, w[W]. (4.7)

We can clearly decompose hyapyy [M, W] in a ‘stationary’ part ghyape ;i = hpape (X, —7T) =
hpartl [SM’ SW] and a ‘dynamic’ part thart1:= hpartl(xs t) _hpartl(xa - T) =
hpart1 [DM, p W] (which is zero before — 7). Theorem 2.1 states that Ay, solves (4.6) for
n=1, thuAs the only thing to prove is that phy,., € L% that is, that if Fe C*(R) is zero in the
past then O, (r"1F (¢t—r/c)) € L°. This is proven by first applying Taylor’s formula (with integral
remainder) to F(¢t—r/¢) about r = 0 up to the order N+/4 1. Then, expanding 6[, by means
of (A 31) leads to a sum of terms of the type F@(¢)A%r* plus a ‘remainder’ of the type
Do < i< AlANTIHE f(l) dx(p!)™* (1 —x)? F@D (¢—rx/c). Now one checks that this remainder satisfies
the hypotheses of lemma 3.1 with K = N. Therefore the remainder is OY(rY) as was to be
proven. Let us now assume, as an induction hypothesis, that we have already constructed all
the 26 ., [M, W] for m < n—1, satisfying theorem 4.1 and decomposed in stationary and
dynamic (past-zero) parts, ghparim and phpa. ., € L™ 1. Replacing these 4,,s in N2f leads to a
similar decomposition of N, in a stationary 4N, and a dynamic ,N,, (past-zero) part. We deal
with ¢V, in Appendix C; let us here concentrate upon 1, N,,. Thanks to equation (4.4), to lemma
3.4 and to the structure of ¢k, discussed in Appendix C we see that N,eL?, where
p =sup (X¢_, (my—1)) (with 2¢_, m, = n, my < nand 2 < a < n). The maximum is reached
for a = 2 and is p = n— 2. Hence the effective nonlinear ‘source’ pN% (dynamic part of the
right-hand side of (4.6 4)) belongs to L"2. Therefore if we solve (4.6 a) by means of the operator
FP OgY, i.e. if we pose for (x/, #) e R% xR

oty (%', )= FP O ((r/r)® p N3 (%, 1)), (4.8)

B=0
then by theorem 3.1, pp3fe L"* and

O ot = o N/ (4.9)

We still need to satisfy the harmonicity condition (4.654). The ‘divergence’ 0,2/ is obtained
by first computing the divergence of the right-hand side of (4.8) (without the FP sign), which
thanks to the Bianchi identity (4.5) is equal to B [Og* ((r/r,)Br int n, N*) (i = 1, 2, 3). Taking
the finite part of the latter expression means finding the residue, at B =0, of the same
expression without the factor B in front. Hence

0y opif = Residue O ((r/m) P~ N3)). (4.10)

As r1nt y N4 e L"2 it can be decomposed as a sum of terms of the type #Lr® (Igr)? F(¢) plus
a remainder O (r"). Now the remainder, when multiplied by 7B, will not generate any pole
at B = 0. We have seen in the proof of theorem 3.1 that the poles of [(Jg! (AL rB*@F(¢)) were
always simple (~ 1/B). Therefore by formula (3.8) the poles of [Jg!(#LrB*e(Igr)? F(¢)) are
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multiple (~ 1/BP*1) and we see that the residue of [Jg! (A% r8%% (Ig7)? F(t)) is zero except in
the logarithmic-free case (p = 0). Now we have

ORH (AL rB*+aF (1) = — Mde it ol lxlx_xleC). (4.11)

The poles of the right-hand side of (4.11) will come only from the integration on an arbitrary
small neighbourhood of x=0 (|x|<e¢). Expanding then F(¢—|x"—x|/c)/|x"—x|
in Taylor series around x=0 leads to a series of terms of the type
A (rYF (¢ —7 [c)) ([ dQakn) - ([0 drrB+2+@+2) The angular integral is zero except if ¢ = [+ 2k
(keN) (see Appendix A), and the radial integral has a residue if and only if a+¢ = —3. When
both conditions are met, the residue is proportional to O, (r @R —7' /c)) (it satisfies (3.18)
as proven above). Changing the names of the space—tlme variables: (x/, #') —>(x, t), we conclude
that 0, b (x, ¢) is a finite sum of terms of the type d L(r tF(t—r/c)), where F(t) is C* and zero
in the past. From §2 and Appendix A it can be uniquely decomposed by means of sTF tensors.
Hence we can write, in a unigue manner,

aﬂDp(r)Lﬂ= 2 O (r Y AL(t—r/e)), (4.124)
1>0
aﬂn[’ E Oy, (r ' Br(t—r/c))

+ 2 {aL—l(r_lciL 1( r/c))+€mb aL— 1( bL 1( 7/6)) (4'12b)

=21

where A, (u), B (u), Cp,(u) and D (u) are sTF tensors which are C*(R) and zero when u < — T.
Because the 4s, Bs, Cs and Ds are uniquely determined we can now algorithmically define a
new object g%’ by the formulae:

g2 =—r VDA —cd, (r 1 VA,) +c20,(r 1 CRC,), (4.134)
an = —a™t VG, _wmba (7 VD ) E aL 1( zL 1) (4'13b)

Dqg = aij[r_lB + aa(r_lBa)]
+ z§2 {(1/6) 0p_o(r * @Ay o) +20,;0,(r "By) — 60,y ;(r "By 1)

3 _ _ _
+;§aL—2(’ 1(2)BijL—2)—aL—2(7 ICijL—z)_zaaL—2(eab(ir le) vL—2)) (4.13¢)

where
U U
DA(u):= f dx A(x), “PA(u):= J dx VA (x),
— a0 — 0
W A(u):= dA(u)/du, ... and all the 4s, ..., Ds are taken at the retarded time u = t—7/c. pgf

has been constructed so as to satisfy (in R} x R)

Opngf =0, (4.144)
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Let us note that it would be possible to construct, from the same 4s, ..., Ds other objects
satisfying also (4.14); for instance, such an object is pg/# with g?° = g%, Hg,2" = g% but:

- 3 _ _
D%ﬂ = pqn+ 2 {‘“33ijaL(7_lBL)_;‘2‘aL—2(’ 1(2)Bz'jL—2)+6aL—-1(i(’ 1Bj)L—1)}~ (4.15)

=2

However, we adopt p¢% rather than g because the trace of p¢¥ is simpler:
pgss = —=3[r'B+0,(r"'B,)]. If we finally define

hpg,rtn Dpnﬂ'i_ ch:z Sh;grtm (4'16)

where the stationary part ghy,.p is given in Appendix C, then we check that by construction

hyarsn solves (4.6) and that moreover, as pp, € L"™* and pg,, (which has a structure similar

t0 hpar,) belongs to L9 then, by lemma 3.4, phyq. , € L7 Therefore, the theorem 4.1 is proven

by induction. B
In other words, we have constructed a particular MPM metric

?part[M W] ~faﬂ+ 2 Gnhpartn} (4'17)

formal solution of the vacuum equations and past-stationary and past-asymptotically Mink-
owskian. We shall now prove that this ‘particular’ solution ‘contains’, in fact, the general
solution of the problem.

4.2. Construction of the general solution: g5,

THEOREM 4.2. The most general past-stationary and past-asymptotically Minkowskian vacuum mMpM
metric in harmonic coordinates, i.e. the general solution of (4.6) (with (4.1)), can be formally expressed
by means of the ‘ particular’ solution (4.17) as

P = ypart[ 2 G"M,, 3 G"‘IW,,], (4.18)
n=1

where the M, s and W, s are arbitrary finite sets of STF tensors satisfying the hypotheses of theorem 4.1,
and where all the series in G must be expanded and rearranged according to the usual rules of formal power
series.

Proof. The proof'is by induction, let us just show on the first two steps how it works. Theorem
2.1 and definition (4.7) guarantee that the theorem is true at order G. Hence there exist some
M,s and Wis such that the general A, is hypy; = hpar; [My, Wi]. Then hgq ), must satisfy

Dhgelﬂ - Ngﬂ(hpartl[Ml’ [/Vl])’ (4-19(1)
Ophigenz = (4.190)

We know already one particular solution of (4.19), namely hy,., [M;, W], therefore the
general solution will differ from it only by the general solution of the associated homogeneous
system: [Jh = 0, 0-h = 0 (plus the boundary conditions (4.64, ¢)), which is nothing else than
the linearized problem of which we know the general solution. Hence we see that there exist
some M,, W, such that

hgenz = hpartz (M, W] +hpart1 [M,, W,]. (4.20)


http://rsta.royalsocietypublishing.org/

A
JA \

/\
'

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

THE ROYAL A
SOCIETY /3

A A

OF

<

OF

Downloaded from rsta.royalsocietypublishing.org

402 L. BLANCHET AND T. DAMOUR

It is then easy to check that (4.20) can be rewritten as
f+ thenl + Gzhgenz = #part [Ml + GMzs [/Vl + GWz] + O(Ga) (4'21)

The same reasoning is readily extended to any order G". n

4.3. Coordinate transformations and the ‘ canonical’ solution: g%

Definition 4.1. Given arbitrary sTF tensors M = {M| (u), S, («)} alone (satisfying the hypotheses
of theorem 4.1) we define the ‘canonical’ metric as

ygla?n [M] = y%/z;rt [M) 0]9 (422)

that is by annulling all the Ws in the ‘particular’ metric constructed in the proof of theorem
4.1.

It would seem at first sight that ¢, is a very special type of vacuum (MpM) metric. However,
we are going to show that it is geometrically (or physically) as general as the most general
vacuum harmonic metric, because it differs from it only through an arbitrary harmonic
coordinate transformation and an arbitrary redefinition of the ‘physical’ multipole moments
M = {M;(u), S, («)}. To do this we need first to control the general transformations between
two harmonic coordinate systems (valid in the domain outside the time-axis).

THEOREM 4.3. Given a finite set of sTF tensors W’ (u) = {W7 (u), X (u), Y7.(u), Z7(«)} constant in
the past but otherwise arbitrary, and a general harmonic vacuum metric (parametrized by M, W), there exists
an algorithm which constructs a coordinate transformation T,y ) to a new harmonic coordinate system of

the type:
Kt =t Gy (W Gl (W (4.23)

such that all the wyap,s are stationary in the past (t<—T), satisfy (Whapyn(X,t)—
Wharen (X, —T))€L™Y, and where why,i [ ] s the functional given in (2.33). A functional
dependence on M and W is understood in w,..,[W'] (n = 2).

Proof. The condition for T,y to lead to another harmonic system is simply (as we start
from a harmonic one)

0=0,(g*0,x') = g*(x) 0,5 x'". (4.24)
Looking for ™ = x4+ Guwt + ... + G™ w% + ... we must solve:

#P(%) 0 plwh + Gui+ ...+ Gl + ...} = 0. (4.25)

We know the general harmonic vacuum metric, which can be written as f*+
Gheh [M, W] +..., where the Ms and Ws represent formal series 2 G"*M,,, X G"'W,,
that we shall not need to explicitly expand here. We then get a sequence of equations to be

solved for the ws:
Ouwt = 0, (4.26)

n—1
Ouwt = _m§=:1h;grtn_m (M, W], ,wh,. (4.27)

We choose as particular solution of (4.26) the right-hand side of (2.33) written for W;, X, Y|

and Zp ; this defines w#, .., [W’]. Then we proceed by induction as for the preceding algorithm
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for gpart» except that now we have no differential constraints on w, (comparable to 8,4 = 0).
We separate the ws in stationary and dynamic parts. At each induction stage (n > 2) we define

n—1
Dw/f)artn [W/] :=FP DI_LI (""mz‘=1 ho;;grtn—m [M> W] aaﬂ w'gartm [W/]) (4'28)

D
(where ( )y denotes the dynamic part of ()). This definition is meaningful, because
phn—m €L" ™ and (by induction hypothesis) pwpaypt,, € L™ ! imply that the right-hand side
of (4.27) belongs to L"72, hence pwp,., € L" 2" = L"! (by theorem 3.1) (qw, treated in
Appendix C, section C2, does not create any problem). ]

After having defined such a particular coordinate transformation we have a result analogous
to theorem 4.2.

THEOREM 4.4. The most general *finite multipolar’, past-stationary and past-asymptotically vanishing
(in space) coordinate transformation of the form: x'* = x'+ Guw*, with w* = whi+... +G" 1wk + ...,
which leads from an arbitrary harmonic metric g, [ M, W] to another one can be formally expressed as :

[ee]
e PRCAl (4.29)

n=
This theorem is proven by the same method as used in the proof of theorem 4.2. The reason
why it works lies in the fact that the general ‘finite multipolar’ solution of the homogeneous
equation (4.26) has been found in §2 as being of the form (2.24), and that the tools of appendix
A show that such a general solution can always be (uniquely) written as (2.33) that is precisely
as Wpapyy [sOme W1

We are now ready to state the last result of this section, showing that the canonical mpm
metric g.,, [M] defined by (4.22) contains the same geometrical (or physical) information as
the general MPM metric ggq, [M, W], because they differ at most by a coordinate transformation
and a redefinition of the multipole moments.

‘THEOREM 4.5. Given a general harmonic vacuum MPM metric gqqp, there exist an harmonicity preserving
coordinate transformation T, and a finite set of “multipole moments® M (themselves expressed as a_formal
series 2;°_, G" M, as in theorem 4.2) such that:

Tw ?gen = ?can [M]' (4'30)

Proof. By the preceding theorems it is sufficient to prove that an arbitrary g, [M’, W’]
can be transformed by some coordinate transformation into some g.,, [M]. The proof is by
induction; it consists in constructing the looked-for coordinate transformation as a formal
product Ty=-0T, icwy©---0 Ty 1w, T iwy: (4.31)
Thanks to theorem 2.1, the first step is achieved by choosing W, = — w; (Gf W=
20_G" YW, ), which effectively transforms #part [M’, W] into another harmonic metric
(i.e. some gpo. [M”, W”]) that differs from g, [M{] (if M’ = £2_, G"* M) only by terms
of formal order G* Hence, W’ = GWj +.... Then we choose W, = — W} and apply Wpart [GW,]
and so on. B

It must be noticed that the final ‘physical multipole moments’> M parametrizing the
canonical final metric will be obtained as

M=M+GH, M, W]+ ... +G" M, [M, W]+... (4.32)
where the .#,, will be complicated nonlinear integro-differential functionals of the moments

33 Vol. 320. A
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M’, W’ parametrizing the general solution g,.,. The same applies to the coordinate
transformation putting g,., into canonical form; it can be written as wy,,. [W] with

W=—W+GW,[M, W+...+GW,[M, W]+.... (4.33)

Theorem 4.5 justifies (within our formal framework) the assumption made by several
authors, notably Thorne (1980), that the general radiative metric can be expressed as a
functional of only two sets of sTF tensorial functions of one real variable, some ‘mass’ multipole
moments M (u) (‘electric-type’) and some ‘current’ multipole moments S, () (‘magnetic
type’) with the only restrictions that M (the ‘total mass’), M, (the ‘centre of mass position”’)
and S; (the ‘intrinsic total angular momentum’ or ‘spin’) be constant (in the ‘centre of mass
frame’). To avoid misunderstandings let us make it clear that, at this stage, the time-varying
M;s and S§;s are only formal functional parameters allowing us to represent the general
past-stationary and past-asymptotically Minkowskian mMpM harmonic vacuum metric gyqp.
They will acquire a more direct physical meaning only at a later stage, when matching to a
source or when studying the asymptotic behaviour. However, in the case where we restrict our
general time-varying multipole moments to be always constant, or simply if we look at the
structure of g,., before the time — T, or for any time ¢ but for large r (spatial infinity) we
recover a physical situation well studied by many authors (notably, Geroch 1970; Hansen
1974; Thorne 1980; Beig & Simon 1981; Beig 1981; Giirsel 1983; Simon & Beig 1983 and
references therein). In this situation, the M;s and the §;s have been shown to have a
well-defined geometrical meaning.

5. NEAR-ZONE STRUCTURE OF THE GENERAL SOLUTION

In the preceding section we have shown how to construct algorithmically the most general
MPM vacuum metric in harmonic coordinates. Evidently, as we are mainly interested in studying
the gravitational radiation emitted by an actual source, the previous vacuum metric can be
of use only outside the source. For physical applications it is useful to distinguish several spatial
regions outside the source. If a denotes the (characteristic) size of the source and A the
characteristic wavelength of any radiation field emitted by the source, one traditionally
distinguishes: a ‘near zone’ (r € A), an intermediate or ‘transition zone’ (r ~ A) and a ‘far
zone’ also called radiation or ‘wave zone’ (r > A) (see e.g. Jackson 1975, p. 392). A far as its
radiative properties are concerned, a field behaves quite differently in the preceding three
regions (see e.g. Finn 1985). Moreover, when nonlinear effects are important (as it is the case
for the gravitational field) one must also distinguish between strong-field regions and weak-field
regions (r > G¢™2M, M being the characteristic mass of the source). Thorne (1980) has also
introduced a further distinction between a ‘local wave zone’ and a ‘distant wave zone’ that
need not concern us now. One expects a prior: the general MPM vacuum metrics (investigated
by Bonnor & Rotenberg 1966; Thorne 1980; and this work) to be able to provide good
approximations to the actual metric only in the weak-field part of the region outside the source
(i.e. r>a and r> Gc 2M) (this is when assuming to deal with a very large number of
multipoles; if one keeps only a few multipoles one must probably stay far away from the source:
r> a). On the other hand, the radiative behaviour of the field, i.e. the distinction
near/transition/far zones, does not seem to place any further limitations on the approximate
validity of the MPM expansions. In § 7 we shall investigate the far-zone behaviour of the general
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MPM metric; here we shall concentrate on its behaviour in the near zone (r € A) outside the
source (r > a). This presupposes that a € A, which defines the so-called ‘slow sources’ (a € A
implies generally that the characteristic velocity within the source v < ¢). To formalize the
asymptotic behaviour of g* when r < A (and a < A), it is convenient to introduce the
characteristic period P of the waves emitted (so that A = ¢P), to use units for space and time
such thata = O(1) and P = O(1) (and thus v = O(1)), to use as constant 7, in equation (4.8):
r, = A = ¢P, and then to consider a sequence of sources which become more and more ‘slow’
(a/A—0), which means in our source-based system of units that the number ¢ measuring the
velocity of light goes to infinity: ¢— 0o (J. Ehlers, personal communication 1983).1 We have
seen ((2.32) and (2.34)) that if we attribute to M (¢) and SL(t) their usual physical dimensions
(so that M; ~ Md', §; ~ Md**'/P stay O(M) when ¢—>c0), then explicit powers of ¢ appear
in k. Let M ={M;, S} denote the finite set of the ‘multipoles’ allowing us to construct
Zoan LM ]. With the preceding choice of units, each £, [M] becomes a function of x, ¢ and

¢ and a multilinear functional (of order z) of the elements of M. In other words, 4 is a sum

cann
of terms each of which is, as concerns its algebraic structure, an arbitrary element (say E,)

of the nth tensorial power of M: M", i.e. a tensor product of # multipoles chosen among M:

E?‘L:MLlMLz'.'ML ..SL.

n

(5.1)

n—s  Ln—gt1°

Each such E, is then multiplied (with contractions) by some Levi-Civita and Kronecker

symbols. To each E, e M™ we can associate two integers: s(£,) the number of ‘current

n
moments’ among the n multipoles, and 4(E,,) the total number of indices among the M s and

the €;,S,1,—,5 appearing in E, (when endowing the S;s with their natural € associates), i.e.

S(Ep):=3s, (5.2a)
b(E,):=s+ 2 1, (5.28)

With these notations it is easy to prove by induction (starting with (2.32) and using definitions
(4.8), (4.13) and (4.16) together with the fact that (Og'f(x/c, t) = ¢®g(x’/c, t')) that the
dependence on ¢ of k., , (X, t, ¢) can be reduced to

Poanal%:6,0) = B sy (/6 0), (53)
E,eM™
where kg _, which involves only the ratio x:¢, is algebraically constructed only from a single
element E, of M"™. Combining now the ‘factorization result’ (5.3) with the previously
demonstrated fact (§4) that pk, € L»! and the known structure of 4%, (Appendix C) we find
that, for any positive integer N, we can write:

1
heann (%, 1, ) = . ZM,,M{Z Foup(t) #9(r/c)® (1 (1/¢))? + Ry (x/c,8)},  (5:4)
where the functions Fy,, () are C* and constant (and even zero for p#0 or a#
—(n+b(E,)—s(E,))) when t<—T, where —(n+6b(E,)—s(E,)) <a< N (as shown by
induction), where 0 < p < n—1 and where Ry (y, ¢) is an ON (V) (y, ¢) function.

t For a definition of a precise framework in which one can investigate the limit process ¢— co see Ehlers (1984)
and references therein.

33-2
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In the case of ‘slow sources’, with a convenient choice of units (¢ = O(1), P = O(1), ¢—> )
we can consider that for all fixed 7, /¢ ~ 7/¢P = r/A—0, and therefore that the formula (5.4),
which came originally from an asymptotic expansion when r—>0 (mathematically), can be
reread as an asymptotic expansion when r/c ~ r/A—>0 (with r fixed), i.e. as a ‘near-zone
expansion’ giving the asymptotic behaviour of the metric outside a slow source whena < r <€ A.
As such, (5.4) confirms and generalizes (because ‘tail terms’ have been fully taken into account
here) a result of Thorne (1980; §1x). Note however that the F,,(¢) of (5.4) are complicated
nonlinear retarded functionals of the multipole moments and not, as in Thorne’s incomplete
treatment, antiderivatives of contracted products of the derivatives of the moments. An
interesting by-product of (5.4) is obtained by re-expressing the preceding ‘near-zone expansion’
in a more formal way as an expansion when ¢—> co with fixed 7, that is, by using a common
terminology, as a ‘post- Newtonian expansion’. 'Then, as a corollary of (5.4), we see that, up to
an arbitrary order N, k., ,(¢) admits the following post-Newtonian expansion:

1 lgc)? 1
heann(0) = X rw >{ % (gk +0(_N)}. (5:5)
E,eM"C "logpgsn—1 ¢ 4
0<k<N

The remarkable fact is that (5.5) proves that g.,, admits a post-Newtonian expansion of
arbitrary order only if one uses as scale (or gauge) functions the (Igc)?/c* (p, ke N) (or some
finer set of gauge functions). This proves that the usual post-Newtonian assumptions, according
to which ¢ admits a post-Newtonian expansion along the simple powers 1/¢¥, is inconsistent
with the nonlinear structure of general relativity. This inconsistency has, in fact, already shown
up in the higher orders of post-Newtonian expansions where the assumption of simple powers
1/c* leads to the appearance of divergent integrals (see e.g. Kerlick 1980; Futamase 1983).
Anderson et al. (1982) have pointed out, using some matching arguments and a partial
integration of Einstein’s equations, the necessity to complete the set of simple powers 1/c*
(keN) by (Igc)/c* (¥ lge in their notation) when considering the ‘near-zone’ expansion.
Here we have shown directly that the integration of the full vacuum Einstein equations, up
to arbitrary post-Minkowskian order, necessitates the extension of the set of scale functions to
the (gc)?/c* (p, ke N). It is notable that such simple scale functions are sufficient; one could
have a priori expected higher order terms to necessitate the use of ¢* Ig (lg ¢) terms, for instance.

6. THE RETARDED INTEGRAL OF A MULTIPOLAR EXTENDED SOURCE

The mathematical tools introduced in § 3, namely the O (") and the L” classes of functions,
have been useful both to construct the general mpM metric and to study its near-zone behaviour.
However, in order to study the far-zone behaviour of the general MmpM metric it is necessary
to introduce some new mathematical tools: an explicit formula for the retarded integral of a
multipolar extended source, a class of functions of two variables (r, u = t—r/c), the O®(1/rN)
class, and a class of functions of four variables, the £" class. We shall discuss here the former
integration formula, and we shall introduce the latter classes of functions in the next section
directly devoted to the far-zone behaviour of the general mpm metric.

It is known (see, for example, Fock 1959) that, if an ‘extended source’ S(x, ¢) is sufficiently
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regular (e.g. C2(R*)) and is zero in the past, there exists one and only one past-zero C*(R*)
solution of the inhomogeneous wave equation

Ou(x, t) = S(x, t), (6.1a)
namely the retarded integral of S:
L 1 1 [ d*
w(x’, ¥) = Or*(S(x, 1)) = —

ZE mS(x, ¢ —|x —x|/c). (62)

In general, the explicit solution (6.2) is somewhat awkward to handle because it contains a
triple integral. For instance it is not straightforward to use (6.2) to control the far-zone
behaviour of u, knowing the far-zone behaviour of §. However, if § has a known (orbital)
multipolarity /, that is if there exists a function of two variables, denoted also by the letter S,
such that

S(x, t) = alS(r, t—r/c), (6.15)
where, for the sake of convenience, we have suppressed indices and have used as variables the
radius 7 and the retarded time {—7/¢ instead of  and ¢, then the retarded integral (6.2) can
be reduced (under the conditions of theorem 6.1 below) to a simpler line integral of some
integrand constructed from an antiderivative of f{r) = (2/r)!718(r, 5) (s fixed). Let us define
the following functions: . L
R(r, s):= 1 f dx (’7"‘) (2/x)41 S(x, 5), (6.3)

0

up (%, £):= f—rdséL{R[%(’_"’)"]_R[%(“”_“‘)”]}. (6.4)

r

and (with¢=1):

— 00

Then, we have the following theorem.

THEOREM 6.1. Let S(r, u) be a complex valued function on R%: = {(r, u)|r = O} that satisfies :

(@) there exists T such that S(r,u) = 0 whenu < — T

(b) there exists a positive integer N such that, for all i < N+1+1, 0t/ (S(r, u)) exists and belongs
to CN(R);

(¢) whenr—0, 38/ (S(r, u)) is O(PPNTH1Y) uniformly in u, i.e. Vuy, Vi < 2N+1+1,IM > 0,
3d > 0 such that when u < uy and r < d, |08 /3% (S(r, u))] < MpPN+HF1—E

Then the function on R* uy (x, t) defined by (6.4) (with (6.3)) is CN(R*), and when N = 2, u; is
equal to the retarded integral of the ‘ source’ (6.1b), i.e.:

NZ=2=u,(x,¢)=Og (AL S(r, t—7)). (6.5)

Proof. A formal way to find (6.5) uses the multipolar expansion of the retarded Green
function Gy = §(¢'—t—|x"—x|)/|x’—x| (see Appendix D). We now outline an indirect but
rigorous proof of (6.5) under the hypotheses of theorem 6.1.

By using the lemma E 1 of Appendix E it is easy to deduce from the hypotheses of theorem
6.1, that, successively,

Vi< N4l AL(Q/or) S(r, u) € CV (RY),

Vi< NH1, (@40 [(2/)S(0, u)] € OV (RE),

Vi < 2N+20+2, (¥/07) R(r, s) is uniformly O(r2N*+2+3-J) when r—0,
Vi< N+20+2, (/o) R(r, 5)€CV(R2),
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‘Then applying Taylor’s formula, with integral remainder, at order N+/+2 to R[A(t—s+7), 5]
(around 7 = 0) leads one to express d (/) [RG(t—s—1),5) —RE(t—s+7), 5)]} as a sum of
terms of the type A% 7= (Q¥+1R /0¥ 1) (§(¢—y5), s), with | < j < (N+1+1)/2 plus a remainder:
AL rN*1P(r, ¢, 5), where, thanks to the results above, P is checked to be C(R% ). Then u; (x, ¢)
((6.4)) can be written as a sum of terms of the type AL 7%~ ’fm dx(3%+1 R/Or¥*1) (x, t— 2x) plus
a remainder:
Al yN+1 JL dx P(r, t, t—2x).
r

The results above, thanks to lemma E 1, show then that u; € CV(R*). Now let us define
Su(%, t,5):= O, I [RA(t—s—1), ) = RG(t—s+7), 5)]}.

Itis evident that [] f;, = 0 if 7 # 0, i.e. in the domain A: = R3 x R. Therefore the value of [Ju;,
comes only from the differentiation of the upper limit of the integral in (6.4). One finds that,
in A (the replacement s = ¢{—r being done last)

Dug,(x, £) = =2 [(1/r)(@/0r+08/3t) (tf1(%, t, )]s ¢~y
Expanding f; by means of (A 35a) and noting that, Yk < [—1, (8¥/0r*) R(0, s) = 0, leads to

the following complicated expanded expression for [Ju; :

i W ()ERI—R), , OFR ]
T p ey =l N

Ouy, = [1(1+ 1)

which can be put in the simple form:

Clug (x, 1) = (3" [567— (M)] '

r

Now by (6.3) we see that, for fixed s, g(r) = R(r, s)/r" is an anti-derivative of order /+1 of
Sr) = (2/r)F1 8(r, 5); therefore in the domain A (outside the time-axis) we have

Clug(x, t) = AL S(r, t—71). (6.6)

When N = 2 both sides of the latter equation are at least continuous all over R* (because u;,
and AL S are CNY(R?)), thus we see that the latter equality is also valid in R* (i.e. including
the time-axis). Finally it can be seen from (6.3) and (6.4) that u; (x, ¢) is zero when t—r < — T,
therefore by the uniqueness theorem for the past-zero solution of the wave equation (6.1) we
conclude that u;, as defined by (6.3) and (6.4) is indeed the retarded integral of #X S(r, t—7).
|
Remark 1. By using (A 36), it is easily checked that (6.4) is still valid if we replace r ! R(r, s),
defined by (6.3) as being the (/+1)th antiderivative (with respect to r) of (2/r)*=1 §(r, s), which
vanishes, together with its first / derivatives, in » = 0, by any other (I+ 1)th antiderivative of
(2/r)1718(r, s) (for fixed s). For instance, we can replace (6.3) by:

2 (7S .—rfd

i.e. by the (/+1)th antiderivative of (2/r)*"18(r, 5), which vanishes, together with its first
derivatives, in 7 = a, where a can be any (sufficiently regular) function of ¢ and s. Two choices
of a (besides a = 0 used in (6.3)) can be of interest in the applications of (6.4): a = (t—s)/2

2/x)l 1S(x, 5), (6.7)
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or a =+ 00.The choice a = 1(t—s) is useful when one is interested in checking the domain
of dependence of ;. Indeed it is easily checked that, when a = }(t—ys), all the integrations
appearing in (6.4) and (6.7) are limited to a domain of the (7, ) half plane which is precisely
the (7, ¢)-projection of the support of the retarded Green function, (the past light cone of x’, ')
e {(r,)|r=0,t/—r <t+r < t'+7 and t—r < '—7r'}. This provides an explicit check of the
causal nature of the solution (6.4). On the other hand the choice, when it is possible, a = + o0
(the causal nature of which is not obvious although correct) is convenient when one is interested
in relating the far-zone behaviour of #;, to the far-zone behaviour of .

Remark 2. Whatever be the choice of the antiderivative, R(r, s), together with its first (/—1)
derivatives, will be zero in 7 = 0 (this fails if / = 0, but then (6.8) below is clearly true). This
implies that (6.4) can be rewritten as, e.g.,

ug (%, 1) = 8y, {%JH ds R, [Mt—r—s), s]}—fH dsd, {Ra[%(”’_“‘)’ ’]}, 6.8)

—© — r

because it is easily checked that the terms coming from the differentiation of the upper limit
of the first integral are proportional to (0%/0r*) R, (0, s) for £ < {—1. The first term in the
right-hand side of (6.8) is clearly a solution of the homogeneous wave equation outside the
time-axis, of the purely retarded type (§2). Therefore if one is only interested in finding one
particular solution, outside the time-axis (r # 0), of the inhomogeneous wave equation (6.6),
which vanishes in the past with the source §, it would be sufficient to use only the second term
in the right-hand side of (6.8) (it seems probable that the formula proposed by Anderson (1984)
is simply related to this second term (with a =+ 00), although we did not try to relate our
solution to his).

Remark 3. The formula (6.4) leads to a very simple result in the special case where the source
Sis S(r, t—r) = rB7¥ F(t—r) with Fe C*(R) being zero in the past, k£ being (for instance) an
integer and B being a complex number. If Re (B) is large enough, the hypotheses of theorem
6.1 are satisfied and formula (6.4) yields:

B _ 1 —-r R (t_r_s)B—Ic+l+2_ (t+ r_s) B—k+1l+2
1AL Bk F(f_ ) —
Ogl(at rB* F(t—r)) DEB—F f_w ds F(s) OL{ . },
(6.9a)
with the denominator
D(B—k) = 2B7%¥*3(B—k+2) (B—k+1)...(B—k+2—1). (6.95)

The validity of the formula (6.9) can then be extended to any complex value of B (except
maybe for some poles when B = k—2,k—1, ..., k—24+lorwhen B=k—[—-3,k—[—4,...) by
analytic continuation (the analytic continuation of the potentially divergent integral
[7" ds F(s5) O, ((t—r—s5)B~%+1*2/7) being, for instance, constructed by integrating by parts).

7. FAR-ZONE STRUGTURE OF THE GENERAL SOLUTION

The asymptotic behaviour of the general MPM metric, within the assumptions of §1, when
r— o0 at fixed time ¢ is simple because, thanks to the assumption of past stationarity, the metric
becomes stationary (and equal to 3¢ = f+ 3 G" ¢h,) as soon as r = ¢(¢t+ T). Then it is seen
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from Appendix C, and the works quoted there, that gk, , admits a (truncated) expansion
in inverse powers of 7 of the type:

BN
B

S}lpartn - Z FQlc

k=n

(7.1)

where the Fg, are some constant coefficients. In other words, (7.1) describes the asymptotic
behaviour of g, at (Minkowskian) spatial infinity (r— 00, ¢ fixed) as well as at (Minkowskian)
past-null infinity (r— 00, t+r/c fixed). It remains to study the asymptotic behaviour of g, at
(Minkowskian) future null infinity (r— 00, at fixed retarded time u = t—r/c). It is therefore useful
to introduce the following definition of a class of functions of two variables which will play the
role of ‘remainders’ in the asymptotic expansions when r— 00, u = t—r/c fixed:

Definition 7.1. A complex valued function of R2: f(r, u) is said to be 0°(1/r") (or to belong
to the 0® (1/7N) class) for some positive integer N if the following properties hold:

(a) 3T such that f{r, u) = 0 when u < — T,

(6) flr,u)eC® (]d, + oo [ x R) for some d = 0,

(c) O™*E £/or™ uF is, uniformly in u, O(1/rN*™) when r— 00, i.e. Vu,, u, €R, Y (m, k) e N2,
JM > 0, 34 = 0 such that
)
yN+tm J*

The 0*(1/rY) functions will replace the O (") functions when studying the asymptotic
behaviour r— 00, u fixed, instead of the asymptotic behaviour r—0, ¢ or « fixed. Note that the
O (rN) were functions of R* instead of R% Note also that we have included explicitly in
definition 7.1 the condition that the O(1/r¥*™) bound be uniform in u, while in definition 3.1
the uniformity of the O(r") bound was a consequence of the other conditions. Finally, the
definition 7.1 would be meaningful for Ne R*.

The following basic stability properties of the classes 0% (1/rY) are easily deduced from the
definition 7.1 (we use the same simplified notation as with the O (V) (see lemma 3.2): f = 0®
(1/rN). When needed we mention explicitly the dependence on the two variables:
Sir, w) = 0%(1/r) (r, ).

Lemma 7.1. We have

ok flr, u)
or™ Quk

(uOSuSulandr>A)=><l

) O%(L/r¥) +0%(1/r¥) = 0= (1/pnt @V, 30),
) 0°(1/rN)-0°(1/rN) = 0= (1/rN*H'),

(iii) O®(1/rN) (r+a, u) = O°(1/rN) (r, u) (for any real a),
) F(u)r® (Igr)? 0°(1/rN) = 0®(1/rN=7¢) (for any F(u) € C*(R), a < N, p = 0; with some

€ > 0 and a+ €€ N if we restrict the definition 7.1 to NeN),

(v) om+E[orm duf 0°(1/rN) = O (1/rN*™) (for any positive integers m, k),

(vi) [F7dx0(1/V) (x,u) = O°(1/rN7Y) (r,u)  (if N> 1),

(vii) [*_dsO=(1/N) (r,s) = 0°(1/rN) (1, u).

Another important property of the 0®(1/r") class is its behaviour under the action of the
‘regularized’ retarded integral operator FP [Jg".
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Lemma 7.2. If f(r, u) € 0°(1/rN*1) with N > 1 (hence N = 2 if we restrict NeN) and is such that
AL flr, t—r) € L™ for some n, then there exist a C*(R) function G(u), zero when u < — T, and a_function
g(r, u) € 0°(1/rN) such that :

FP Og1(rBALflr, t—1)) = 6L(%r:ﬁ)+ﬁ"g(r, t—r). (7.2q)

B=0

Symbolically, we can write lemma 7.2 as:

A

N> 1=>FP O (AL 0°(1/rN 1)) = 8, (G(t—1) /1) +#L 0= (1/r). (7.2b)

Proof. If Re (B) is large enough the function S(r, «):= rB f(r, «) will fulfil the conditions of
theorem 6.1. Hence, from (6.8), we find for Bu(x, ¢):= Qg (rB AL f(r, t—1)):

i, {00 fw o Bl =21} .
with
t BR,(r, 5):= r’f dx 2/x)’ 1xB flx, s), (7.4)
and
56, (u):= f " dsBR,[Y(u—s), 5] (1.5)

The validity of (7.3) can be extended by analytic continuation (because #Xf€ L") to all Be C’
(:=C—2Z). If Re (B) < N—1 we can choose a = + c0. Then let us define

+00
G(u):= FP BG_ (u) =2 FP dxBR, (x, u—2x). (7.6)
B=0 B=0J0
Now the hypothesis 7 f(r, t—r) € L™, after a spherical harmonics projection, implies for f{r, ¢)
an asymptotic expansion when r—0 of the type 2 F(¢) r* (Ig7)? plus a ‘good’ remainder
(O(r¥) and CX¥~1(R%) where KeN can be chosen arbitrarily large). It is then easy to check,
by standard methods, that G(«) ((7.6)) is C*(R) and zero when ¥ < — 7. On the other hand
the last term (with @ = 4 00) of (7.3) is analytic near B = 0 because we have chosen N > 1.
Expanding the derivative éL by means of formula (A 35a) we can write:
t—1r

- dséL {r 1R, [L(t+r—ys),s]} = Al g(r, t—r),

—0
where g(r, «) is a sum over ¢ and j (with 0 <</, 0 <j < /) of terms of the type

. u . . +m .
r’(f“)j ds [2(u—s) +r]'+’J dxx~t1 f(x, 5).
—o0 r+i(u—s)

Using the hypothesis fe 0® (1/r¥*1) with N> 1 and lemma 7.1, one finds easily that
ge 0= (1/rN). [

Having thus defined a ‘good’ class of ‘remainder’ terms for an asymptotic expansion at
(Minkowskian) future null infinity (r— 00, u = t—r fixed) we can now introduce a class of
functions which will play when r— 00 (u fixed) the role played by the L” class when r—0.

34 Vol. 320. A
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Definition 7.2. A complex valued function f(x, ¢) defined in a domain D of R*(r > r, for some
7o = 0) is said to belong to the class of functions Z" (ne N) if the following properties hold.
For any positive integer N there exists a finite sum
Sn(x, ) = Z Fopp(t—1)A%r % (Ign)?, (7.74)
psn
where k€N, k> 1, peN and p < n, and where the coeflicients Fyy,(«) are both C*(R) and
zero in the past (u < — 7 for some fixed T'), such that the difference f(x, t) — Sy (x, ¢) is a finite
sum of terms of the type A~ g(r, t—r) where each g(r, «) is O® (1/rN):

VN, fix, f) = Sy(x, £) + 3 AL 0% (1/rV) (r, t—1). (7.7b)

In short we can say that #" is the class of functions that admit when r— 00, ¥ = t—r fixed,
an asymptotic expansion to all order N along the scale functions % (Igr)?, with £ > 1 and
0 < p < n, with coefficients admitting a finite multipolar expansion (the coefficients of which
are smooth past-zero functions of ) and with a ‘good’ 2 A% 0® (1/rN) (r, «) remainder.

Now, the class £° is essentially sufficient to describe the far-zone behaviour of the linearized
MPM metric A,,,. Indeed, after (4.7), (2.32), (2.33) and (A 35a), hp,,, can be written as

hpartr = 2 Fop(t—1) A% r ¥, (7.8)

which means that the ‘dynamic’ part of ., belongs to #°. As the general MpM metric can

be described by the particular MpM metric gy = f+2 G® hyypy,, of §4 and that hpyy,, is

obtained from the preceding A8 by an algorithm based essentially on algebraic and

differential operations and the application of the integral operator FP [J3! we need to study

the behaviour of the #” class under such operations. By using lemma 7.1 it is easy to check

the following stability properties of the £" classes under algebraic and differential operations.
LemmA 7.3. If f(x, 1) € L™ and g(x, t) € L™, then

(i) flx, £) +g(x, 1) e Lo mm,

(i) flx, 1) .g(x, He L™,
(iii) VgeN, VpeN, 043, , flx,fjeLn.
Let us now prove the more difficult result.
THEOREM 7.1. If f€ L™ and f€ L™ for some n and m, and if all the powers of 1/r appearing in Sy

((7.7a)) are of order k = 2, then FP OR! f€ L™ (and € L™ from theorem 3.1).
Proof. Let us write for any chosen N, f= S8y, + Ry, with
Sn+1 = 2z Fop(t—r) ArF (Ig7)?,

psn
2< k< N+1

Ry = 20 (1/rN*) (r, t—1).
It is easily proven that Sy, € L™, thence Ry, € Ls*P ™) Applying now lemma 7.2 (or rather
a parallel lemma where the condition 7L fe L™ is replaced by (XA f) € L™), we get
FPOR! Rysy = ZOL(G(t—r)/r) + Tl 0°(1/rV).

Now as FP[Og!f = FPOR' Sy +FPOR' Ry, it is clear that if we prove that, for all
p<n, FPOR (F(t—1) A9 % (Igr)?) e £™*! the theorem will be proven. This will be a
consequence of the following lemma.
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LEMMmA 7.4. We have:

IR (F(t—7) 18-21€ (Ig 1)) |5 _, € 2P,
and if k> 3

FP O (F(t—r) B~ %49 (Igr)?) e £7.
B=0
(The ‘FP’ prescription has been dropped in the first relation because the retarded integral

converges near B = 0.)
The main tool in the proof of lemma 7.4 is the identity

Q
OR! (@5 F(t=0) = —3 sy B_ﬁ irz) VR
(B—k+1—q) (B—k+2+q) 0 B k-1 (D@
+ B i1, OR' (A9 r F(t=r)), (7.9)

where FeC®(R) is past-zero, and VF is its past-zero antiderivative. The identity (7.9) is
proven either by integrating by parts the s-integration in (6.94) or by using the same reasoning
as for proving the identity (3.11). Then we can iterate (7.9) (which increases the power of 1/r
in the last term) and differentiate it p times with respect to B (which adds a factor (Ig7)?).
This leads to a formula of the type

op

R (19 5 *(lgn? Flt—1)) = 52

N+2—k o
{ S C(B) i PR COF (1)

+ Dy (B) OIRH(AQ rB-N-2 CN-2+0)F (4 r))}. (7.10)

If £ > 3 all the coeflicients C; and D, are analytic at B = 0, and if £ = 2 only the first ¢+ 1
coefficients C; have a (simple) pole at B = 0. Taking the finite part at B =0 of (7.10) and
applying lemma 7.2 to the ‘remainder terms’ which have precisely the structure FP [Jg!
(A9 O® (1/rN*1)) (with O®(1/rN*1) being a sum of terms of the type "+ (Igr)! G(t—7)),
finally proves lemma 7.4 and thereby theorem 7.1. [ |

It is to be noted that only the powers 1/7% in the ‘source’ increase (by one) the number of
logarithms in the ‘solution’ = FP [Ji! ‘source’. A closer examination of the new logarithms
in the solution leads to the relation (with a slightly generalized angular part and B = 0 taken
from the start because the retarded integral converges anyway)

OOt (ks k.. k22 (Ig 1) F(t— 1)) + (— )} g(gp’l [ o aaw( -i- I)F(t—r))efé’p,

(7.11)
where k%:= (1, n?), 3*:= (—0,, 0,), “VF(u) = J'lioo dx F(x) etc.... In particular, by expanding
the derivatives 0* and by re-summing the multipolar expansion we find at the ‘leading

logarithm approximation’ when r—>+ oo, t—r fixed,

PP+ [t=r _
Og (2 (gn)P F(t—r, n®)) = -—2(—5:)%7]_ ds F(s, n*) + O ((1g7)?/7). (7.12)

With lemma 7.3 and theorem 7.1 in hand, it is a simple matter (adapting the proof of
theorem 4.1) to prove that the ‘dynamic’ part of 4,,,,, belongs to £, in other words we
have the following theorem.

34-2
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THEOREM 7.2. The far-zone behaviour of hy,apy , [M, W' (X, t) is described by the following asymptotic
expansion (up to an arbitrary order N):

a0 =S| 5 BE unembmi-n), )
l

where the functions Fyy,(u) are C*(R) and constant when u < — T and where the ‘remainders’® R%(r, u)
are O° (1/rN) (if N is large enough; if N is smaller than n(ly,. [M, W1+ 3), where Ly, [M, W]
is the maximum order of multipolarity in M and W, R, (r, u) will be a ‘constant in the past> O (1/rV)
Sunction).

The appearance of 1g7/r terms in the far-zone behaviour of a radiative metric in harmonic
coordinates has been known since the work of Fock (1959) (see also Isaacson & Winicour 1968;
Madore 1970). Our result (theorem 7.2) is, in a sense, more general and more precise than
Fock’s result because it deals with all orders in 1/7 (and in G) and because it shows how the
powers of the logarithms increase with n. However, in another sense, (7.13) is less precise than
Fock’s result because we do not control which logarithms come from a formal expansion of
the multipoles expressed in terms of a ‘better’ retarded time, u* = u—2GM1gr (withu = t—7),
according to

M, (u*) = M, (1) —2GM g r O M, (u) + 2G2M? (g )2 DM, (u) ... . (7.14)

This problem, as well as the link with the Bondi-Sachs—Penrose approach to the far-zone
behaviour, will be considered in more details in sequel papers. For the time being let us only
emphasize that, in the present MPM approach, the main interest of the expansion (7.13) lies
in its proof where it is tied to the definition of g, which means that in this approach, one
can link the far-zone behaviour of a radiative metric to the ‘multipole moments’, M (u), S, (u),
and thereby also to its near-zone behaviour (§5).

APPENDIX A. SYMMETRIC TRACE-FREE TENSORS AND MULTIPOLE EXPANSIONS
A 1. Notation

We treat the harmonic coordinates (x°, x%) (i =1,2,3) as if they were Minkowskian
coordinates in flat space. In particular the spatial coordinates x’ are treated as Cartesian
coordinates and are raised and lowered by means of the Euclidean metric d;; = Kronecker
delta, so that: A'=4,;, 4,, =4, =2,4,* We denote by ¢, the fully antisymmetric
Levi—Civita symbol (€,,; = +1). In order to deal conveniently with sequences of many spatial
indices we use an abbreviated notation for ‘multi-indices’, where an upper-case latin letter
denotes a multi-index while the corresponding lower-case letter denotes its number of indices:
dpy Toi=T, iy iy When several multi-indices appear simultaneously
it is understood that different carrier-letters are used, for instance: Tpo = T ;, Jidyr When
needed we use also P—1:=1,4,...i, , S0 that the tensor T“P‘1:= Ta?’ln-ipﬂ has p indices.
We denote also 7= ((#,)2+ (x5)2 + (x5)%)}; 0! = &*/r;0; = 0/’ nli=nb.. .5 8,:= 9.9, .
For any positive integer [ we shall denote [!:=[(/—1)...2.1; [!l:=1{({—2)...(2 or 1). A
multi-summation is always understood for repeated multi-indices: Sp 7T =S, Tp =

2,

L:=115...0; Pi=1,1,..

iy Sty iy Ty iy
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Given a Cartesian tensor Tp, we denote its symmetric part by parentheses
P y p Y P

1

Tipy = Ty, = =2 T

p! ” ’i'a'(l)"'iu(p) (A 1)

(o running over all permutations of (12...p)). The symmetric-and-trace-free (stF) part of Tp
is denoted indifferently by Tp = Tipy = T(h...i,,)' The explicit expression of the sTF part is
(Pirani 1964; Thorne 1980)

N 3p]
Tp = T<P> = ’EO “g 3(i1i2'“3i2k_,i,k Sizkﬂ...i‘,,) Uy @y .. G B (A 2a)
where
Sp = Tip) (A 20)
! —\k —9%k—1\1!
a£= p! (=) (2p—2k—1)!! (A 20)

-1 (p—2k) 1 (20)11

%p] denoting the integer part of 1p. For instance, Tj; = T;;—10y Tpys
Tijx = Ty =3 [0 Tiaay + 05 Tinar + ki Thjam -

A 2. Algebraic reduction of Cartesian tensors

Itis well known (see, for example, Gel’fand et al. 1963) that the set of all symmetric trace-free
Cartesian tensors of rank [/ (sTF-/ tensors) generates an irreducible representation of ‘weight’ [
(and dimension 2/+ 1) of the group of proper rotations (SO(3)). Any tensor of rank p (member
of a reducible tensorial representation of SO(3)) can be decomposed in a sum of algebraically
independent pieces each of which belongs to an irreducible representation and, therefore, can
be expressed in terms of some sTF tensor. More precisely, any tensor Tp can be decomposed
in a finite sum of terms of the type y% R, where y% is a tensor invariant under SO(3) (a product
of some Kronecker and Levi-Civita symbols) and R; a str-/ tensor (I < p) obtained by
contracting Tp by some other invariant tensor y;¥’ (Coope et al. 1965, 1970). The highest-weight
piece of this decomposition is always Tp. These assertions are easily proven by induction if one

uses the following (straightforwardly checked) formula (which generalizes the well-known

U; T, = R +"Z__T{‘T€ai<i, ég?.)..i,_oa"'gj_l_iam, Ré;.).i,_,» (A3)
where A
R§, g U(iH, Ti,...m, (A 4a)
R =U, Tb(zl A, Capabs (A 45)
Iéér)il =U, T;ul FA (A 4¢)

The well-known law of multiplication of representations Dy ® D, =D),_@® ... ® Dy,
(which corresponds, in quantum language, to the law of addition of angular momenta:
J = L+ S) corresponds, in sTF language, to an algebraic reduction of the tensorial product of
two STF tensors:

U S VL = 2 7§LRJ3 (A5)

l—s|<j<l+s

where each weight j appears only once, where yJ; is an invariant ‘3—;j tensor’, which is
separately sTF in §, L and J, and where each R is bilinearly built out of Ug and V;, (see Coope
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19770). The ‘Clebsch-Gordan reduction’ (A 5) is easily calculable, for low values of s, from (A 3)
and involves only simple numerical coefficients. This simplicity is to be contrasted with the
complicated numerical factors which plague the usual angular-momentum theory employed
in quantum mechanics (with its apparatus of 3—j, 6 —; symbols, etc.). Moreover, Cartesian
tensors are more intuitively related to directional properties in three-dimensional space than
the canonical basis of irreducible tensors (eigenvectors of J;) of the usual angular-momentum
theory. For these reasons we have followed the numerous authors (notably, in the context of
general relativity, K. S. Thorne) who advocate the use of sTF tensors.

A 3. Canonical basis of the vector space of STF tensors

If we denote by e; (¢ = 1, 2, 3) the Cartesian basis vectors (¢f = %), it can be easily verified
that a basis of the (2/+ 1)-dimensional vector space of sTr-/ tensors is made out of the sTF parts
of the /-fold tensorial products (e, +ie,) @ ... ® (e, +1e,) D e, ® ... @ e; (with 2 = —1) and
their complex conjugates. More precisely such a basis is { 1" tm. — [ < m < [} where, whenm > 0,

yim = gim Elm, (A 6a)
with tm 1 o\ 1 102 3 3
EL == (8i1+28i1)"' (5im+2(3\tm) 8im+l oo 8il’ (A 6b)
and
Alm = (=)ym (20— 1)1 [(24+1)/4r (I—m)! (I+m))]3, (A 6¢)
and when m < 0 (the asterisk denoting the complex conjugate)
Yir = (=)™ (7gm*. (A 64)
The normalization is such that
5 S _ 20+t
DT () = b (A7)
The expanded form of ¥4 is (Pirani 1964; Thorne 1980) (for m > 0):
fim — (_)m(2l+ 1 ({—m) !)%[%(l—m)](—)" (2{—2k—1)1!
L= an (I+m)!) =, (—m—2k)!(2k)!!
X a(il iyt 'aizk—-l ok (é\%zkﬂ + ia%zkﬂ) T (aézlﬁm + z‘8%27c+m) 8%2k+m+1' : '8?l)' (A 68)

This basis is linked in a simple manner to the usual scalar spherical harmonics on the unit sphere

(normalized so that [dQY'™(Y'™)* = §,,,8,,,, with dQ2 = sin @ dO dP):
Y'm(@, @) = Yimpl = Yimapl, (A 8)

A 4. Multipole expansions and STF tensors

The spherical harmonics expansion of a scalar function f on the unit-sphere S,,
A8, D) =3 fim Y™(O, @), can alternatively be written as (with summation over L)

Sin) = éloﬂ AL, | (A 9a)

where f, = .. f;,» Y¥™. The sTr tensor coefficients f;, in (A 94) are unique and can be directly
computed as the following integrals over S, (Thorne 1980):

5 =%—}l)ﬁfdg(n) AL fln). (A 95b)
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Let us now consider a tensor field of ‘integer spin s’ on the unit sphere, i.e. a sTF-s tensor
function of n: Tg(n). First each component of T can be considered as a scalar and expanded
along the #Ls (the validity of such expansions will be discussed in Appendix B):

o0
Tg(n) = ZE Ty, 1%, (A 10)
=0
where the coefficients Tg; are separately sTF with respect to § and L. Then, thanks to the
‘Clebsch-Gordan’ reduction (A 5), one can decompose T, in irreducible pieces y§; RS so that
o0
Tom)= 3% T ys RYAL, (A 11)
I=0|l-s|<j<li+s
where R% is sTF and where ¥, is some invariant tensor (made out of ds and es), which is
separately sTF in §, L and J. The decomposition (A 11) is nothing but an expansion in tensor
spherical harmonics in sTF guise. The usual canonical-basis form of this expansion is obtained
by decomposing each R% on the (2j+ 1)-dimensional canonical basis of the sTF-j tensors:
{YIm; —j < m <j}. It is convenient to introduce some normalization coefficients C*%:/, namely

. o J .
Rl =Csbi Y .Rsmm yim, (A 12)
m=—j
so that (A 11) can be rewritten as
o) j+s +j

Tsimy=3% 5 X RUImYYIn(m), (A 13)
j=0l=[j—sfm=—j
where ~ ) ..
YSSly]m(n) c= CSZJ’}/éL Y’Jm AL, (A 14)

We can choose the normalization coefficients so that
[a0im s 7. 3mm) (P57 )% = 8188 (A 15)
S

The Y5/ (n) are the generalization for any integer spin s of the ‘pure orbital harmonics’
(simultaneous eigenfunctions of L?, J? and J,) thoroughly studied by Thorne (1980) when
5 < 2 (remark that Thorne denotes (s/’, /m) the superscripts that we have denoted (sl, jm) in
accordance with the customary ‘quantum’ usage: J = L+.S).

Let us write the explicit form of the sTF-tensor spherical harmonics expansion (A 11) for
s=0,1,2: .

T(n)= 2 A,fy, (A 16)

jz0

Ti(n) = T B,y

j=z0

+j§1 {Cigortiyy+€iap Dpyy fag 1}, (A 17)

T(ik)(n) = X E;fyy
jizo

+ 21 {Fr—1¢i eyg -1+ Goy—1 €ani By ag—1)

Jjz

+;§>:2 {Hig—a s +€ubi fk) bI—2Pag—ot (A 18)
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The general multipole expansion of a symmetric 2-tensor field is obtained by adding (A 18)
and d;; times (A 16). When multipole-expanding a space-time tensor field Ty, t) = Ty(rnl, 1)
the tensor coeflicients of the sTF expansion (A 11) become functions of the O(3) invariants r and
t: R%(r, t). Finally it should be remarked that when dealing with the full O(3) group (including
spatial inversions) it is convenient to attribute an ‘intrinsic parity’ T = %1 to each tensor (so
that Tg = . (—)® T under x’* = — %) 8;; being endowed with a positive intrinsic parity, but
€;x With a negative one. Then, if the left-hand sides of (A 16)—(A 18) have m = +1, the
multipole tensor coefficients A,B,C,E F, H, will have 1 =+1 but D, G and I will have
T = —1 (for instance, the mass multipole moments M, have = = + 1 but the spin multipole
moments §7, have T = —1).

A 5. A compendium of useful formulae

Let us gather here, without proofs, some formulae which are of frequent use when dealing
with sTF multipole expansions. Some of these formulae are taken from (or are equivalent to
results of ) Thorne (1980), others come from Blanchet (1984). Other formulae are contained
in Thorne (1980) which is a basic reference for sTr multipole expansions (the latter work uses
a notation for multi-indices different from ours: I}, instead of L, for 7,...7;). In the first formulae
we introduce the special notation (convenient in practical calculations) 4 ;, for the
(un-normalized) sum % .4 where § is the smallest set of permutations of (1...0),

id(l)“'ia(l)
which makes 4; ;, fully symmetrical in z,...7;; for instance 84, g = 04 1o+ Gy 1y + 4 7

(2k) ! (1—2k) !

8(iliz"‘8izk-1izk Migogaoni) = ma{iniz‘“ G fag Magprree- i) (A 19)
(w21 (20— 2k—1) 1!
— _\k L :
fip, = ’Eo( ) @i—nn {i1i2'~~3izk_lz'2,c RS Y (A 20q)
N (20— 2k—1) 1!
—_— _NeA\TT T k.
aL - k§0 ( ) (21_ 1) !! {iliz'°°8i2k_li2k ai2k+l...il}A > (A 20b)
W21 (2)— 4k +1)!!
L= (21_ 2k + 1) 1 é\{il iy 'é\izk—lizk ﬂizkﬂ-“il}; (A 21 ll)
/21 (2/— 4k + 1) 11 A
O, = Eom% ivr Oy i Oty i) A (A 21)
l
n; ﬁal...al = ﬂz‘al...al+2l—+13i<al ﬁaz,..al>; (A 22‘1)
Lo @ ply! (2p+2¢—4k+ 1)1 -
A, B, = fins ArnBrs (A 22h
fpgdpDg kz=:o k!(p—lc)!(q ) (2P+2q 2k+1)” RS “*KRKS ( )
(where r =p—k, s = ¢q—k);
[+1
/ 7 AL l! 7
nLﬁL=ﬁLnL=ﬂLnL=—(~2—l—T)“Pl(n.n) (A25)
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where P(x) is the usual Legendre polynomial of order / (for a generalization of this formula
to the Gegenbauer polynomials see Lucquiaud 19844, b);

R @)

F(n.n) —EE —T—nLﬁLJilsz(z)I’,(z) (A 26)

is the expansion of an arbitrary function of x = n.n’ in a series of Legendre polynomials;

fd.QﬁL=0 if (>1; (A 27)
fd.()nil...niwrl = 0; (A 28a)
Q S S SR b
d ni,"'n’igp - (2p+1)” {6185 " Vigp_y Gap)? (A 28 )
A anp! o s
P anp! L 4 4ng! L 5
Opf(r) = fig H(r 29/ f1r) = A (2)* (/0())L1(r); (A 30)
A _ AL & (=2)F@2l=k=1)! B
abf(r) - (—2)lk§=:1 (/c—-l)!(l—/c)! r (a/ar) f(7)> (A 31)
O = AA—2)...(A=2[+2) 7, ”~L (YAeC). (A 32)
Two particular cases of (A 32) are |
=0 if j=0,1,2, .., 1—1, (A 33)
éLr‘1=aLr'1=(——)1(21—1)!!%‘—{. (A 34)
a (Flt—er)Y _ . & ({45! EDF(t—er) s .
& (*57) = -o B ot e @D (Assa)
A (Ft=n))_ 2 o o F(u))
al‘( r )_l!ﬁl‘(v u) Qut vt \v—u)’ (A 358)
a (Flt+r))_ 2 o o (E@)
al‘( r )_l!ﬂl‘(v u) Out 't \v—u)’ (A 35¢)
(where u = t—r, v = t+7);
A G (o y)t
aL{(iiQ—riL)}ﬂ) i oi=0,1, ..., 2 (A 36)
A(rAL) = (A=1) (A+1+1) A%, (A 37)

35 Vol. 320. A
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APPENDIX B. POINTWISE CONVERGENCE OF MULTIPOLE EXPANSIONS

Most text-books of mathematical physics discuss only the convergence i the quadratic mean
of multipole expansions. An exception is the work of Courant & Hilbert (1953, volume 1,
p. 513), which discusses the pointwise convergence of the usual scalar spherical harmonics
expansion, although by means of quite indirect arguments. In the mpm approach to gravitational
radiation theory one needs to perform many nonlinear pointwise operations on tensor spherical
harmonics expansions, it is therefore useful to have a good direct control of the pointwise
convergence of tensor spherical harmonics expansions.

It has been pointed out to one of us in a personal communication by B. Simon (1984) that
a useful identity to control the pointwise convergence of scalar spherical harmonics expansions

is + 2I+1
im
X |rme, P = —

m=-—1

(B 1)

We shall first generalize the identity (B 1) to the tensorial case. We have introduced in
Appendix A an orthonormal set of sTF-s tensor spherical harmonics: {Yff’{:(n), J=20,
—j<m<y, |j—s| <I<j+s}. It is easily seen from the definition (A 14) (where y{, is a
location-independent invariant tensor) that under a proper (active) rotation R the (2/+1)
tensor fields {¥%7™(n); —j < m < j} transform as

R(Y§I™) (n) = CV 3y, " R(Y]") (B 2)

(the rotation R = (R;;) acts both on the spin indices S and the field point n, hence the transform
of a tensor field is R(T; ;) (n) = R; 4...R; 4 Tp, o (R7'(n)), where R7Y(n); = Ry;n,). By
definition, the canonical basis {¥/*; —j < m <j} of the (2j+ 1)-dimensional set of STF-j
(location-independent) tensors generates a unitary representation (of weight ;) of SO(3); i.e.

there is a unitary matrix D7}, ,,.(R) such that

RP) = % D7 ) T (B3)
Hence the (2j+1) tensor fields Y39™(n) (—j < m <j) transform under the same unitary
transformation:

R(YE™) (n) = S D (R) YE7™(n). (B 4)
Now (B 4) and the unitary character of the matrix D, imply that the scalar field

Fim) =% 3 |Tgm () (B5)

S m=—j
is invariant under a rotation (R(f) (n) = f(R™'n) = f(n)). Therefore f*7(n) is constant on S,

and the value of the constant is easily obtained from the orthonormality relations (A 15). This
leads to the following generalization of (B 1):

2j+1
23 E Y53 (m)l? =T

Byy ooy bgMm=—]

(B 6)
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Let us consider a sTF-s tensor field on the unit-sphere (n* = 1), say 7T4(n), and its associated
(formal) expansion in tensor-spherical harmonics:

<] j+s

T X HEm), (B7)

where fmot=i

+j .

Hbi(n):= 3, jAsl,fm Y& im (p), (B 8)

m=—;

with ‘
Astim . = ZJ dQ(n) (Y89 (n))* Tg(n). (B9)
S J s,

At this point we assume only that Tg(n) is regular enough (e.g. continuous) for the integrals
(B9) to exist. Then because of Bessel’s inequality (valid for any orthonormal system, see
Courant & Hilbert 1953, p. 51) we already know that the series X; ; ,,, 14572 converges. This
result is, however, too weak to ensure the pointwise convergence of the series (B 7).

Lemma B 1. If Ty(n) is a twice continuously differentiable str-s Cartesian tensor field on the
unit-sphere Sy(n® = 1), then there exists a numerical sequence €; tending to zero when j— 00, such that each
‘harmonic’ piece of the tensor spherical harmonic expansion (B 7) of T admits the following uniform bound
on S, (for any j = 1 and | with |j—s| <1< j+5):

1

(%] |Hgl,i(n)|2)’ < g/jt. (B 10)

Proof. The infinitesimal generator of rotations acting on the tensor field T(n) is a first-order
differential operator J = L+.S (where L = —ir x 9 acts tangentially to S, and S is a matrix
acting on the spin indices). Hence (J)? is a second-order differential operator on S,, so that
by hypothesis the (stF) tensor field Tg(n):= (J)? Tx(n) is continuous on S,. We can then
consider the multipole expansion of Tg(n). As (J)? is self-adjoint, the exparision coefficients
Astim of Ty(n) (equation (B9)) will be equal to Xg[dQ((J)2 Vhimy* To. As Ysb.im(m)
generates an irreducible representation of the rotation group of weight j (equation (B 4)), it
is an eigenfunction of (J)? with eigenvalue j(j+ 1). Therefore

Asbim = j(j4 1) AsLim, (B 11)

Now by Schwarz inequality (with respect to %.,,) followed by a summation over S, we deduce

from (B 8) that + +
g <( 5 armp)(s 2 pgmme). (B 12)

m=—j S m=—j

Using now (B 6) and (B 11) we get (j = 1),

m=—j

+i
Sl i< X 1) @7+ 1)/ (G 19, (B 13)
s
Becayse of Bessel’s.inequality (applied to Tg) the series X, , ,, |4*57™2 converges, thus
Xizjts, Xm =+ | 45%9m|2 tends to zero when j tends to infinity. Hence (B 13) implies (B 10).
|
Note that if Tg(n) is C*"(S,) a similar reasoning (using (J)?") leads to a faster uniform

decrease of the ‘harmonic pieces’ (< €;/#4"D). Let us now use the bound (B 10) to prove
that the tensor spherical harmonics series (B 7) converges pointwise to Tg(n).

35-2
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TueorEM B 1. Any twice continuously differentiable str-s Cartesian tensor field on the unit sphere, T (n),
can be pointwise expanded in a tensor spherical harmonics series (namely (B 7)) which is uniformly convergent
on the unit sphere.

Proof. As the right-hand side of (B 10) is a convergent numerical series, we first conclude
that the series (B 7) must converge pointwise to some tensor field, say Tg(n). Moreover, as
each ‘harmonic piece’ H¥7(n) is continuous on S,, and as the convergence to Tg(n) is uniform
on §, (because the bound (B 10) is uniform) we deduce from standard theorems on uniform
convergence that the limit field Tg(n) is continuous on S,. Therefore, if we show (denoting

2,:= Q U 2 .
1Usl32:=[dRE|Ug(n)[?) that | Ty— Till2e = 0, (B 14)
the continuity of Tg(n) and Tg(n) will imply that Va, Tg(n) = Tg(n) and the theorem will be
proved. Now, (B 14) will be true if we only prove that

k j+s 112
limit || Ty— > S HEI|| =0 (B 15)
ke o0 i=01=lj~s| L

(indeed, as we have shown that (B 7) is uniformly convergent we can go to the limit inside the
integral in (B 15)). By well-known reasonings (see Courant & Hilbert 1953, p. 51), equation
(B 15) is equivalent to saying that the set of tensor spherical harmonics is (L?) ‘complete’, i.e.
that any continuous sTF tensor field on S, can be approximated in the quadratic mean, with
any prescribed accuracy, by some finite linear combination of the Y¥7/™. Finally this
completeness follows from Weierstrass’s approximation theorem, which implies that the
continuous field r. Tg(n) can be uniformly approximated in the cube —2 <x?<2 by
polynomials in % ( = 1, 2, 3) and therefore that Tg(n) can be uniformly approximated on S,
by polynomials in n? that, by (A 214) and the reduction (A 10)—(A 11), can be written as some
finite linear combination of the Y% ™. [ |

ApPPENDIX C. STATIONARY MPM METRICS

It is known that stationary asymptotically flat space—times are analytic in a neighbourhood
of spatial infinity (Beig & Simon 1981; Beig 1981) and thus that there exists a ‘good’ class
of coordinate systems in which the metric coefficients admit expansions when r— 00 in
powers of 1/r (without lg 7). These expansions are uniquely determined in the conformal space
by the Geroch—-Hansen multipole moments (Geroch 1970; Hansen 1974) or, in the physical
space, by the Thorne (1980) multipole moments or the Simon-Beig (1983) ones (see Giirsel
1983; Simon & Beig 1983 for equivalence between these various moments). We wish here to
recover, and to construct explicitly, these expansions within the framework of MpM metrics, using
harmonic coordinates in physical space and the Thorne moments. This will prove that
harmonic coordinates belong to the ‘good’ class of coordinates. More details about what follows
are contained in Blanchet (1984).

C 1. Construction
We recursively assume that some ‘particular’ 4% .. [<M, W], for m < n, are constructed
which admit a finite expansion in powers of 1/r of the type

79

Refivem [sM, W] = EICFQIcr_]c: (C1)
a,
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where Fy, is a contracted product of 0 or 1 Levi-Civita tensor, p Kronecker tensors and
m stationary STF tensors chosen among the (M ={M, S} or W={W,, X;,Y,,Z;}
which generate A, [sM, sW] ((4.7) with (2.32) and (2.33)). Replacing the A,y ,,s into
N, (h,,;m < n) leads to a finite sum

7ne
Naﬁgrtn [sMa SW] = Zk GQk;kTE’ (C2)
q!

where GQk has the same structure as Fg,. IfX?_, /; is the total number of indices on the n tensors
My, .., Zy, composing Gy, and if a, b and d are respectively the numbers of Wps, X,s and
Zgs among the nM L+ Z5 , then (by a dimensional argument):

1 n

n
k=n+ % l,+a+2b+d. (C3)

i=1

In the following we will need the inequality
n
2 li—q+s=0 (C4)
i=1

relating 337_, /; and ¢ with the number s of spatial indices on N% . (s =0, 1, 2 according to
aff = 00, 07, ¢). This inequality can be proven by an argument of ‘addition of angular
momenta’ (Thorne, personal communication 1984) or equivalently by equating the number
of free (i.e. non-contracted) spatial indices on both sides of (C 2).

Using the function B—>A~1(#9 rB*%) (analytic in C’ = C—Z) of (3.9) we define

B o [sM, W)= Zk Gor FP A= (A9 rB7E—2), (C5)
q, =
Then A2, , solves Einstein’s stationary equations. Indeed, first Ak%5 ., = N3 is checked to
be true (adapting the proof of (3.15)); second, d,hgh ¢, is a sum of terms
R rB—k—lﬁQ
Gor- esidue{ }
U Tpoe \(B—k—1—q) (B—k+q)

(similarly to (4.10)) which are zero unless ¢ = £. But, by (C 3) and (C4) (with s=0or 1),
we have: ¢ = k=>n < 1. Therefore: 0, K3 i n = 0, as was to be proven.
However, it is necessary to prove that each function
A9 Bk
(B—k—gq) (B—k+1+¢q)

B->A~1(4Q B-k-2) =

in (C 5) is well defined for B = 0 (no pole at B = 0); because if it is not, taking the finite part
will produce a lgr and our recursive assumption (C 1) will fail at order n. A pole arises when
¢ = k—1, which implies, thanks to (C 3) and (C 4),

n
n=g— % Li+1—a—2b—d < s+1—a—2b—d, (C 6)
=1

so that necessarily n < 3 (Thorne, personal communication 1984; correcting section X (ii) of
Thorne 1980). In the quadratic case n = 2 we easily see, thanks to the structure of N,

part2
(~0prt0gr7*) that B->A~1(r8 Ny,.(,) has no pole in B = 0. In the cubic case n = 3, the
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‘critical’ terms in N, 5, which generate a pole, are such thats = 2,a = b = d = 0 (see (C 6))
and ¢ = [, +1,+/;+2. We find

(N _ fijL, Ly Ly
part3/critical — rll+lg+la+5
1y Y25 ¥3

{JMLI My M; + EMLl Sr, St
+ C‘YLI Y, Y+ D~ML1 Y, Y, + EMLI M, Y, + FSLI Sp, Y}, (C7)

(note the even number of current multipoles S;), where 4, B, C, D, E and F are constant
coefficients that we shall prove to be all zero; A=B=C=D=E=F=0.

(i) Proof that yyp;pN¥ =0 (hence A = 0). Two remarkable facts allow us to prove that
mmm N (the part of N¥,. . which is composed by three interacting mass multipoles M) is
identically zero (not only the ‘critical” part is zero). First, 5,,,48° and Z; pyph8 = 85 prprh¥ (the
My, x My, parts of hyapey = A7 (B Npareo) g o) satisfy (3,h3° being the part of 43 4, composed
with M)

Apnahs’ = maa N3 = — 50k arh1° O e h3°s (C 8a)

2ZA Mngi =2 MMNgi = “%alc m3° O arh3°- (C 8b)
i i

In (C 8) and in the following we use for computations of the ‘sources’ N, and N, the Appendix
A of Bel et al. (1981). From 0y A, 0, h;, = 3A(h}) and the structure of £, (~ 9, 771) we can prove

A_l(rBakhlak‘hl)lB=0 = 5, (C9)

which gives
umhy’ = — (") (C 10q)
zi‘a Mthi = _Tls(Mhtlm)z- (C 108)

Second p772: V¥ involves only terms with A%, 1,143 and 3, 172,58 and does not depend on
mmhy:
v VY = 306 P 0y (aranh3’ + ;n; ™) =835 O aahS® O (aa ey’ + 20 ppaghs'™)
m

+3 50" 0y prhY° aj mh’ _i’%‘ mP2° O a1 O phY°. (G 11)

(by using A = k% = 0). Now, replacing in (C 11) 5,38+, prarhT™ by —1(;,42)2
(equations (C 10)) leads to 5,2, N¥ =0 (in particular 4 = 0). Note that, since the mass
multipoles M, are arbitrary, any static metric will have the latter property (in harmonic
coordinates). For instance, this is true for the Schwarzschild metric for which we have /4 = 0
for n > 3.

(ii) Proof that B = 0. In order to reach the critical ,,44N¥, we must control the terms in
5P+ 2 sl and p,ohS? which have ‘maximum multipolarity’ (i.e. terms ~ #i, with [ = I, +1,
for interactions My xS, or Sy xS; ). We replace 4" = —4%, (—)!/1!1 (9, ") My, and
s =4%y 5 (=) (14+1) e (Oqp,177") Spp—y into

ss VP + 2 5 Ny = 20, ghY™ 0, shOF, (C12q)
?

MSNgi = ak Mh(l)o(ai shgk"ak skgi)’ (C 125)
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we keep only the terms ~ #;, ; and apply the operator A='(r%...) 5 _,. This leads to

i — - @L,—nn 4
Sshgo+z ghlt = > 32, 1,(2(, —1)!1(2,—1) L, L,
i

2T GG gt fntes (G130

Bi= Y 8,20, + 1)1 2L+ 1)1 €4
e b by 11'(l2+1)|(11+12+1) fll+lz+2

l l
X (’27?;—1‘%14,—1% Mgy, SL2+§'lj_‘IﬁaL,Lz—1 My, SbL2—1)+ e (G130)

(Note that g¢h3® and ¥, k¥, unlike ,, 4k, could be computed exactly by the same method as
the one employed for (C 10)). Now the only pieces in j, 4 N¥ which will contribute to ‘critical’
terms are those of the type 0; 4, 0;h, or by 0, b, 0; 1y, ice.

mss VY =30 110 0y (55h9° + 2;‘ sshs) —20;5h3%0;) prsh®
_tho ai Sh(llk a] S}lgk‘_skgk a(z Shgk aj) M}lgo + cee . (C 14)

Plugging (C 13) into (C 14), we readily find (3765N¥) cpitica1 = 0, hence B = 0.

(iii) Proof that C = D = E = F = 0. We have just shown that the ‘canonical’ stationary
metric (that is, the ‘particular’ metric with W, = X = ¥; = Z; = 0) satisfies (C 1) (no Igr).
Now we extend this result to the particular metric by showing that N, 53— Neapg is a sum
of ‘non-critical’ terms. To do that we perform upon the canonical metric the non-harmonic
coordinate transformation x* = x*+ Guw* [{W] (where w* [{(W] is the vector of (2.33)). Then
hoan1 [sM] is transformed into Ay, [sM, sW] (by (4.7)), and hgyp o [sM ] and fgyy 3 [§M] are
transformed into

Ry [sM, W] = hean s [sM ]+, [sM, sW], (C154)
Wy [sM, sW1 = hoans [sM]+ k3 [sM, sW], (C 150)

where £, and £, are sums of terms of the following type:

kylsM, W1 ~ hogn, Ow+w Ohgyy  + 0w dw, (C 16a)
ky[sM, W] ~ hognoOw+w 0k gy o+ hogn, Ow 0w+ ww 00k, +0woww.  (C 166)

We have included in £, and £, the necessary terms such that (C 15) are functional equalities,
that is that both sides of (C 15) are computed at the same values of the coordinates. The
divergences of &, and f; are

aﬂh/zaﬂ [sM, W] =0, (C174)
Ophs [sM, W = han o [sM 1055 0* [sW], (C175)

where we have used A%, [(M] = 0. Writing Einstein’s (harmonic) equations for 4 then
shows (via (C 154)) that

N;ﬂ(hpa.rtl [SM) SW]) = Ngﬂ(}lcanl [SM]) +Ak02‘ﬂ [SM) SW]) (C 18)
and thus
hefree [sM, sW1 = ko [sM1+ AT (1B AR [sM, sW1) 150 (G 19)
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Now, thanks to the structure (C 16a) of k£, (~ 0pr'10g77"), we find (similarly to (C9))
A=1(rB AKgP) g = k¥, and therefore k[ M, W] = hp,py, [sM, sW]. Consider Ay [sM, W]:

it satisfies Einstein’s non-harmonic equations (see (4.2)—(4.4)) with ‘source’ Ny, (since
hy = hparey and Ay = ko). Thus we have the looked-for relation (using (C 156) and (C 178)):
Ni‘)'g,rw_Nzgns =0 (}lca,nza wﬂ) aﬂ( canz ) fmﬂa (h?anz )+Akaﬂ (C 20)

It is a simple matter to verify that the four terms in the right-hand side of (C 20) are
‘non-critical . Indeed critical terms should come from yw® = 0 or yw* =3, | (0,7 ") Yr_y
(remember a=b=d=0) so the first three terms cannot contribute to terms of the type
fiyjr, 1,1, @nd the last term, being a ‘Laplacian’, is inverted without Igr. (However note that

aprzorzA Y(rBAky) gy # k;). Hence C=D = E = F=o. [ |

C 2. Study of the quantity qw*

Assuming for qw,, (m < n) a structure similar to ghy, ¢ ,—; (equation (G 1)), we have to solve
(using (C 1)): 0
q,k

with £ = n—14+X7"_,/,+a+2b+d (notations of (C 3): a is for instance the total number of
functions Wp and Wp). Then we apply the operator A™! (rB...) to the right-hand side of (C 21)
and find that poles at B =0 arise for ¢=£k—1 which implies, similarly to (C 6),
n<s+2—a—2b—d <3 (since s=0,1 according to a = 0,¢). The case n =2 is readily
treated using the structure ~ 0p771 04! of the ‘source’; the case n = 3 is treated by noticing
that the ‘spin’ index i of eventual critical terms in g} will be carried by one function Y7,
(because of a = b =d =0 and thanks to the form of the sources Aw}, ~ h,_,, ow}, (4.27)):
therefore critical terms of the type #;;, ;, ; cannot appear and we have, for alln > 1,

79
sw‘;‘z = 2 FQk‘r_k" (C 22)
q,k

(with & > 1). )

APPENDIX D. MULTIPOLAR EXPANSION OF THE GREEN FUNCTION Gy

The aim of this appendix is to recover by a direct but formal calculation the result of theorem
6.1 (i.e. equation (6.5) with (6.4)) using a multipolar expansion of the retarded Green function

(with ¢ = 1) Gr(¥ —x) = 8(t —t—|x'—x|)/|x' — x| (D 1)
(such that [JGg(x'—x) = —4nd,(x'—x)).Gy is a function of r=|x|,7 = |x’|, ¥—¢ and
n-n’ = x-x'/(rr'); it can be expanded in a series of Legendre polynomials of n-n’ (Campbell
et al. 1977). By using (A 26) this series can be written as

Y —t) Y(1—v|) {* (2¢+1

q=0

Gr(x' —x) =

2rr’
where Y is the Heaviside function and

/2 2__ (¢ —1t 2
y (7 (D 26)

21’

The expansion (D2) of Gg is useful when dealing with the retarded integral
OrY(S(x, ¢)) = (—1/4m) [d3x dt G (x’'—x) S(x, t) where § has a known multipolarity
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1:S(x, t) = AL S(r, t—r), because we can explicitly perform the integration over the angles. This
leads to /L

O AL S(r, t—1)) = —ﬁzr, ”drdt Y(¢ —t) Y(1—v]) rS(r, t—1) P,(v) (D 3)

(with AL = p’¢8, p/@), Tt is convenient to introduce advanced and retarded variables both
for the source point (rn, t) and the field point (r'n’, ¢'):

u=t—r; uw=4t~—r (D 4a)
v=1t+r; vV =0+71 (D 4b)

In these variablesitis apparent that the domain & of integration is precisely the (u, v)-projection
of the past null cone of (x’, t'), thatis: @ = {(u, v); 4’ < v < v and u < v’}. We find

i "—u) (v —
Dﬁl(ﬁLS[%(v—u),u])=‘“Z(~v7:u—,)ff9dudv(v—u)6‘[%(v )u]Pl(l— ET__u_))_((_v___Z%)

(D 5)
A long but straightforward calculation shows that the following equality holds:

(o —u) (v’—v)) (=) =) {(u’—u)’(“'“”)l}_ (D 6)

=) o—w) " I (—u)l W' @ —u)*

p(1-2 _
A more elegant way to prove (D6) is to notice that the function (¢,v";u,v)—>
P(1—2[(«'—u) (v"—v)/(v'—u') (v—u)]) is the (local) Riemann function of the self-adjoint
Euler—Poisson—Darboux equation [0, +[(I+1)/(v'—u")?]f= 0 (equivalent to (2.10)) (see
Darboux 1889) that is the only solution which takes the value one along the characteristic lines
«" = uand v” = v. Therefore the right-hand side of (D 6), which is easily checked to satisfy these
properties, is equal to the left-hand side. Now, we use the operator EA)’L (actingon x’) and (A 35b)
and find (re-establishing the variables 7" and ¢)

O s B0—ua)) = —gp | [ o2 o—wa) 8 [ L= E=T20], g

v—u r

Equation (D 7) is apparently quite different from (6.4). However, these results can be
reconciled; indeed plugging (6.7) into (6.4) we obtain

1 [t O-r=8) dx (¢ —7 —5) (¢ —1 —5—2x)}
Dﬁl(ﬁLS(T, t—r)) =WJ dsa {f ‘ﬁ< ) ( y ) S(x, S)

@ x r

M=) dy (£ 1 — ) (41 —s—2x)}
—f s it s, s>}. (D 8)

a r

We can commute the operator (") with the two integral signs [% bt—er'=s) (for e = +1) because,
thanks to the factor (t’—er’—s-—2x) inside the integrals, all differentiations of the upper
limits (¢ —er’—s) vanish. Then the resulting two integrands: 0L{(¢—er —s)!x

(¢ —er' —s—2x)t/r'} S(x, 5) are equal (thanks to (A 36)). We thus obtain

HEHr=s) dx , (¢ —er —s) (¢ —er’ —s— 2x)}
Ot (AL S(r, t—r 2”11'] S(x, s) aL{( ) ( )}

Lt~r—s) b= r
(D 9)

(value independent of €). Equation (D 9) is easily seen to be identical (when € = + 1) to the
right-hand side of (D 7) with 4 = s and v = 5+ 2x. [ |
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ApPENDIX E. SOME MATHEMATICAL PROOFS
E 1. Proof of lemma 3.1

Lemma 3.1 will be a corollary of the following lemma.
LemMa E 1. Let N and K be some non-negative integers and f(x, t) be a _function on R? X R (where
X = (x5, Xy, ..., %,) ERE = R*—{0}) satisfying
(1) fix, ) e CY(RE x R);
(2) Vi, t,eR, Vm < N, Ye > 0, 3d > 0 such that t, <t <t and 0<|x|= (T ,x})i<d
imply (y, .oy, =0, 1, .., 0, with xy = ¢)
10s,...ae (% 1) < € |X[57T. (E 1)
Then f(x,t) can be extended by continuity to a function on R™, which is CN' (R™1) with
N’ = inf (N, K). Moreover, Ym < N’, Yte R, we have:
Oy 0, S0 £) = 0. (E 2)
Proof. Because f{(x, t) is at least C°(R% x R), we see from (E 1) with m = 0 that f(x, t), when
‘extended to R”*! by f(0, ¢) = 0, belongs to C° (R"*1). Suppose N > 1 and K = 1. Then (E 1),
when m = 0, implies that f(x, ¢) is differentiable in (0, #) with 0,£(0, ) = 0, and, when m = 1,
that 0, f(x, ¢) is continuous in (0, ¢). Thus: f(x, t) € C*(R"*1) with f(0, ¢) = 0,f(0, ¢) = 0. By the
same reasoning we have f(x, {) e CP(R"*!) with f{0,¢) = ... =0, , 10, 7) =0 for all p less
than N and K. Hence the result. ||
Now, if f(x, t) satisfies the hypotheses of lemma 3.1, then, by lemma E 1 with n = 3, we have:
VgeN, f@(x, t) e C¥'(R*). This proves lemma 3.1.
E 2. Proof of lemma 3.3
Let us write the retarded integral (3.4) of f(x, t) € ON(r") under the form

(ORY) (¢, £) == f dpd@ de p sin € f(x' +pn, ¢ —p) (E3)

(with x—x" = pn = p (sin® cos D, sin O sin P, cos @)). Then, by a standard theorem for
integrals with compact support, such as (E 3), we have (with primes suppressed)

VgeN, (8/0)?(DOg'S) (x, 1) e CV(RY) (E 4)

and we can differentiate under the sign [Jg'. We apply Taylor’s formula with integral
remainder to ((Jg'f)(x, t) between the points (x, ¢) and (0, ¢), up to order N:

. N-1 ; W E ; ; 1 (l—a)N_l oN . E
Ox'f— on XU E () = At Nfodoc V=11 (axil...axiNDRf) (ax, t) (E5)
with { ol

By al®) = 3 (5 O7) 0. 0. (E6)
From (E 4) we check that F; _; (¢) is zero for t < — T and C*(R). Hence, applying (0/0t)? to
the left-hand side of (E 5) leads to a function which is zero for t < — T'and CV (R?). Therefore
the right-hand side of (E 5) satisfies the defining properties () and (4) of the O¥(r¥) class
(definition 3.1). Requirement (¢) follows from the continuity of (0% /dx%...0x'~) (0/0¢)2 (IR f,
which provides for this right-hand side the desired bound M|x%...x%| < MV, [ |
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